Cho dãy số \(\left( {{u_n}} \right)\) biết \(\left\{ \begin{array}{l}{u_1} = - 1\\{u_{n + 1}} = {u_n} + 3\end{array} \right.\) với \(n \ge 1\). Khi đó
Quảng cáo
Trả lời:
a) \({u_1} = - 1;{u_2} = {u_1} + 3 = 2;{u_3} = {u_2} + 3 = 5;{u_4} = {u_3} + 3 = 8\).
b) \({u_5} = {u_4} + 3 = 11\).
c) Có \({u_{n + 1}} - {u_n} = 3\). Do đó dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng với \({u_1} = - 1;d = 3\).
Do đó \({u_n} = {u_1} + \left( {n - 1} \right)d = - 1 + \left( {n - 1} \right)3 = 3n - 4\).
d) Ta có\({u_{35}} = 3 \cdot 35 - 4 = 101\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].
Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).
Trả lời: 4050.
Lời giải
a) Ta có \({u_2} = {u_1} + 5 = 2 + 5 = 7\).
b) Có \(d = {u_{n + 1}} - {u_n} = 5\).
c) Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 2 + \left( {n - 1} \right) \cdot 5 = 5n - 3\).
d) Ta có \({S_{10}} = 10{u_1} + \frac{{10 \cdot 9 \cdot 5}}{2} = 20 + 225 = 245\).
\({S_{100}} = 100{u_1} + \frac{{100 \cdot 99 \cdot 5}}{2} = 200 + 24750 = 24950\).
Vậy \(S = {u_{11}} + {u_{12}} + ... + {u_{100}} = {S_{100}} - {S_{10}} = 24705\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.