Câu hỏi:

19/11/2025 36 Lưu

Một loại vi khuẩn cứ sau mỗi phút thì số lượng tăng gấp đôi, biết rằng sau 5 phút người ta đếm được có 64000 con. Hỏi sau bao nhiêu phút thì có được 2048000 con.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \({u_{n + 1}}\) là số lượng con vi khuẩn sau n phút.

Số lượng vi khuẩn ở mỗi phút lập thành một cấp số nhân với \(q = 2\). Khi đó \({u_{n + 1}} = {u_1} \cdot {2^n}\).

Ta có \({u_6} = {u_1} \cdot {2^5}\)\( \Rightarrow {u_1} = \frac{{{u_6}}}{{{2^5}}} = \frac{{64000}}{{{2^5}}} = 2000\).

Theo đề có \(2048000 = 2000 \cdot {2^n}\)\( \Leftrightarrow {2^n} = 1024\)\( \Leftrightarrow n = 10\).

Vậy sau 10 phút thì có được 2048000 con.

Trả lời: 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

Câu 2

a) Số hạng thứ hai của cấp số cộng là \({u_2} = 7\).

Đúng
Sai

b) Công sai của cấp số cộng \(d = 5\).

Đúng
Sai

c) Số hạng tổng quát của cấp số cộng đã cho \({u_n} = 5n + 3\).

Đúng
Sai
d) Tổng các số hạng từ số hạng thứ 11 đến số hạng thứ 100 của cấp số cộng đã cho bằng 25705.
Đúng
Sai

Lời giải

a) Ta có \({u_2} = {u_1} + 5 = 2 + 5 = 7\).

b) Có \(d = {u_{n + 1}} - {u_n} = 5\).

c) Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 2 + \left( {n - 1} \right) \cdot 5 = 5n - 3\).

d) Ta có \({S_{10}} = 10{u_1} + \frac{{10 \cdot 9 \cdot 5}}{2} = 20 + 225 = 245\).

\({S_{100}} = 100{u_1} + \frac{{100 \cdot 99 \cdot 5}}{2} = 200 + 24750 = 24950\).

Vậy \(S = {u_{11}} + {u_{12}} + ... + {u_{100}} = {S_{100}} - {S_{10}} = 24705\).

Đáp án: a) Đúng;    b) Đúng;   c) Sai;   d) Sai.

Câu 3

a) Cấp số nhân có công bội \(q =  - \frac{3}{2}\).

Đúng
Sai

b) Số hạng đầu \({u_1} = \frac{{ - 8}}{3}\).

Đúng
Sai

c) Số hạng \({u_5} = \frac{{27}}{2}\).

Đúng
Sai
d) \(\frac{{ - 2187}}{{32}}\) là số hạng thứ 8.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({u_n} = {n^3}\). 

B. \({u_n} = {2^n}\). 
C. \({u_n} =  - 5n + 1\).    
D. \({u_n} = \frac{1}{n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP