Bố mẹ bạn X mang tiền gửi ngân hàng theo thể thức lãi kép (lãi nhập gốc vào kì gửi tiếp theo). Số tiền ban đầu là A, lãi suất là r/kì. Bố mẹ nhờ X giải thích, đưa ra công thức về số tiền nhận được (giả sử toàn bộ quá trình lãi suất không đổi).
a) Sau 1 kì; sau 2 kì; sau 3 kì; sau 4 kì và dự đoán công thức sau n kì.
b) Nếu cứ sau mỗi kì, bố mẹ bạn X lại mang thêm đúng số tiền A ra ngân hàng để gửi thêm thì kết thúc kì thứ 12 toàn bộ số tiền nhận về được tính theo công thức nào?
Bố mẹ bạn X mang tiền gửi ngân hàng theo thể thức lãi kép (lãi nhập gốc vào kì gửi tiếp theo). Số tiền ban đầu là A, lãi suất là r/kì. Bố mẹ nhờ X giải thích, đưa ra công thức về số tiền nhận được (giả sử toàn bộ quá trình lãi suất không đổi).
a) Sau 1 kì; sau 2 kì; sau 3 kì; sau 4 kì và dự đoán công thức sau n kì.
b) Nếu cứ sau mỗi kì, bố mẹ bạn X lại mang thêm đúng số tiền A ra ngân hàng để gửi thêm thì kết thúc kì thứ 12 toàn bộ số tiền nhận về được tính theo công thức nào?
Quảng cáo
Trả lời:
a) Sau 1 kì số tiền nhận được là: \({T_1} = A + A \cdot r\).
Sau 2 kì số tiền nhận được là \({T_2} = A + A \cdot r + \left( {A + A \cdot r} \right) \cdot r\)\( = \left( {A + A \cdot r} \right) \cdot \left( {1 + r} \right) = A \cdot {\left( {1 + r} \right)^2}\).
Sau 3 kì số tiền nhận được là \({T_3} = A \cdot {\left( {1 + r} \right)^2} + A \cdot {\left( {1 + r} \right)^2} \cdot r = A{\left( {1 + r} \right)^3}\).
Sau 4 kì số tiền nhận được là \({T_4} = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^3} \cdot r = A{\left( {1 + r} \right)^4}\).
Sau n kì số tiền nhận được là \({T_n} = A{\left( {1 + r} \right)^n}\).
b) Số tiền bố mẹ bạn X nhận được sau 1 kì là \({T_1} = A + A \cdot r = A\left( {1 + r} \right) = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^1} - 1} \right]\left( {1 + r} \right)\).
Số tiền bố mẹ bạn X gửi ở kì 2 là \({S_2} = A\left( {1 + r} \right) + A = A\left[ {\left( {1 + r} \right) + 1} \right] = A\frac{{\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]}}{{\left( {1 + r} \right) - 1}} = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]\).
Số tiền bố mẹ bạn X nhận được sau kì 2 là \({T_2} = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]\left( {1 + r} \right)\).
Suy ra số tiền bố mẹ bạn X nhận được sau kì 12 là \({T_{12}} = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^{12}} - 1} \right]\left( {1 + r} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].
Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).
Trả lời: 4050.
Lời giải
Ta có \(\left\{ \begin{array}{l}{u_3} = - 3\\{u_8} = - 23\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 2d = - 3\\{u_1} + 7d = - 23\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 5\\d = - 4\end{array} \right.\).
Khi đó \({S_{16}} = \frac{{16}}{2}\left( {2{u_1} + 15d} \right) = 8\left[ {2 \cdot 5 - 15 \cdot \left( { - 4} \right)} \right] = 560\).
Trả lời: 560.
Câu 3
A. \(n = 12\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \( - 349525\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.