Câu hỏi:

19/11/2025 30 Lưu

Bố mẹ bạn X mang tiền gửi ngân hàng theo thể thức lãi kép (lãi nhập gốc vào kì gửi tiếp theo). Số tiền ban đầu là A, lãi suất là r/kì. Bố mẹ nhờ X giải thích, đưa ra công thức về số tiền nhận được (giả sử toàn bộ quá trình lãi suất không đổi).

a) Sau 1 kì; sau 2 kì; sau 3 kì; sau 4 kì và dự đoán công thức sau n kì.

b) Nếu cứ sau mỗi kì, bố mẹ bạn X lại mang thêm đúng số tiền A ra ngân hàng để gửi thêm thì kết thúc kì thứ 12 toàn bộ số tiền nhận về được tính theo công thức nào?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sau 1 kì số tiền nhận được là: \({T_1} = A + A \cdot r\).

Sau 2 kì số tiền nhận được là \({T_2} = A + A \cdot r + \left( {A + A \cdot r} \right) \cdot r\)\( = \left( {A + A \cdot r} \right) \cdot \left( {1 + r} \right) = A \cdot {\left( {1 + r} \right)^2}\).

Sau 3 kì số tiền nhận được là \({T_3} = A \cdot {\left( {1 + r} \right)^2} + A \cdot {\left( {1 + r} \right)^2} \cdot r = A{\left( {1 + r} \right)^3}\).

Sau 4 kì số tiền nhận được là \({T_4} = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^3} \cdot r = A{\left( {1 + r} \right)^4}\).

Sau n kì số tiền nhận được là \({T_n} = A{\left( {1 + r} \right)^n}\).

b) Số tiền bố mẹ bạn X nhận được sau 1 kì là \({T_1} = A + A \cdot r = A\left( {1 + r} \right) = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^1} - 1} \right]\left( {1 + r} \right)\).

Số tiền bố mẹ bạn X gửi ở kì 2 là \({S_2} = A\left( {1 + r} \right) + A = A\left[ {\left( {1 + r} \right) + 1} \right] = A\frac{{\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]}}{{\left( {1 + r} \right) - 1}} = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]\).

Số tiền bố mẹ bạn X nhận được sau kì 2 là \({T_2} = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^2} - 1} \right]\left( {1 + r} \right)\).

Suy ra số tiền bố mẹ bạn X nhận được sau kì 12 là \({T_{12}} = \frac{A}{r}\left[ {{{\left( {1 + r} \right)}^{12}} - 1} \right]\left( {1 + r} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

Câu 2

a) Số hạng thứ hai của cấp số cộng là \({u_2} = 7\).

Đúng
Sai

b) Công sai của cấp số cộng \(d = 5\).

Đúng
Sai

c) Số hạng tổng quát của cấp số cộng đã cho \({u_n} = 5n + 3\).

Đúng
Sai
d) Tổng các số hạng từ số hạng thứ 11 đến số hạng thứ 100 của cấp số cộng đã cho bằng 25705.
Đúng
Sai

Lời giải

a) Ta có \({u_2} = {u_1} + 5 = 2 + 5 = 7\).

b) Có \(d = {u_{n + 1}} - {u_n} = 5\).

c) Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 2 + \left( {n - 1} \right) \cdot 5 = 5n - 3\).

d) Ta có \({S_{10}} = 10{u_1} + \frac{{10 \cdot 9 \cdot 5}}{2} = 20 + 225 = 245\).

\({S_{100}} = 100{u_1} + \frac{{100 \cdot 99 \cdot 5}}{2} = 200 + 24750 = 24950\).

Vậy \(S = {u_{11}} + {u_{12}} + ... + {u_{100}} = {S_{100}} - {S_{10}} = 24705\).

Đáp án: a) Đúng;    b) Đúng;   c) Sai;   d) Sai.

Câu 3

a) Cấp số nhân có công bội \(q =  - \frac{3}{2}\).

Đúng
Sai

b) Số hạng đầu \({u_1} = \frac{{ - 8}}{3}\).

Đúng
Sai

c) Số hạng \({u_5} = \frac{{27}}{2}\).

Đúng
Sai
d) \(\frac{{ - 2187}}{{32}}\) là số hạng thứ 8.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({u_n} = {n^3}\). 

B. \({u_n} = {2^n}\). 
C. \({u_n} =  - 5n + 1\).    
D. \({u_n} = \frac{1}{n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP