Câu hỏi:

19/11/2025 75 Lưu

Trong không gian, cho hai đường thẳng song song \(a\)\(b.\) Mệnh đề nào sau đây đúng ?

A. Có đúng một mặt phẳng đi qua cả hai đường thẳng \(a\)\(b.\)
B. Có đúng hai mặt phẳng đi qua cả hai đường thẳng \(a\)\(b.\)
C. Có vô số mặt phẳng đi qua cả hai đường thẳng \(a\)\(b.\)
D. Không tồn tại mặt phẳng đi qua cả hai đường thẳng \(a\)\(b.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Hai đường thẳng \(a\)\(b\) song song với nhau. Khi đó, có đúng một mặt phẳng đi qua cả hai đường thẳng \(a\)\(b.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\). 
B. \(f\left( x \right) = \frac{{x + 1}}{{x - 2}}\).         
C. \(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 2}}\). 
D. \(f\left( x \right) = \frac{{3{x^2} - x - 2}}{{{x^2} - 4}}\).

Lời giải

Đáp án đúng là: A

Hàm số \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức hữu tỉ xác định tại \(x = 2\) nên nó liên tục tại \(x = 2\).

Câu 2

A. 1.          
B. 2.     
C. 0.     
D. 3.

Lời giải

Đáp án đúng là: C

Ta có, theo hệ quả \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{n}} \right) = 0 \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {\frac{k}{n}} \right) = 0,\forall k \in \mathbb{R}\).

Do đó, \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{2}{n}} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x = 1.\]   
B. \[y = 1.\]     
C. \[x = 2.\]           
D. \[y = 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( + \infty \).    
B. \(\frac{1}{2}\).  
C. \(1\).         
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP