Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\). Đường thẳng \(\Delta \) song song với đường thẳng nào dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là: B

Hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) có chung điểm \(S\) và lần lượt chứa hai đường thẳng song song \(AD\), \(BC\) (do \(ABCD\) là hình bình hành) nên giao tuyến \(\Delta \) đi qua \(S\) và lần lượt song song với \(AD\), \(BC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Hàm số \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức hữu tỉ xác định tại \(x = 2\) nên nó liên tục tại \(x = 2\).
Câu 2
Lời giải
Đáp án đúng là: C
Ta có, theo hệ quả \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{n}} \right) = 0 \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {\frac{k}{n}} \right) = 0,\forall k \in \mathbb{R}\).
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{2}{n}} \right) = 0\).
Câu 3
Mẫu số liệu ghép nhóm về thời gian (phút) đi từ nhà đến nơi làm việc của các nhân viên một công ty như sau:
|
Thời gian |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số nhân viên |
5 |
15 |
10 |
12 |
24 |
32 |
5 |
Số nhân viên đi làm chỉ mất thời gian dưới 30 phút là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
