Câu hỏi:

19/11/2025 5 Lưu

Cho cấp số cộng \(\left( {{u_n}} \right)\) với công sai \(d\), khẳng định nào sau đây đúng?

A. \({u_n} = {u_{n - 1}} - d\).                
B. \({u_n} = {u_{n - 1}} + d\).    
C. \({u_n} = {u_{n - 1}} \cdot d\).   
D. \({u_n} = {u_{n - 1}} + 2d\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d\) nên ta có \({u_n} = {u_{n - 1}} + d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Media VietJack

\(I,J\) lần lượt là trung điểm \(SA,SB\) nên \[IJ\] là đường trung bình của tam giác \(SAB\), do đó \(IJ\,{\rm{//}}\,AB\).

Tương tự, \(EF\) cũng là đường trung bình của tam giác \(SCD\) nên \[EF\,{\rm{//}}\,CD\].

\[CD\,{\rm{// }}AB\] (đáy \(ABCD\) là hình bình hành).

Do đó, bốn đường thẳng \(AB,\,CD,\,EF,\,IJ\) đôi một song song với nhau.

Vậy đường thẳng \[IJ\] không song song với đường thẳng \[AD.\]

Lời giải

1.

a) \[\mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {n + 1 - n} \right)}}{{\sqrt {n + 1} + \sqrt n }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\]

\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} + 1}} = \frac{1}{2}\]. (0,5 điểm)

b) \(\mathop {\lim }\limits_{x \to \frac{\pi }{6}} \frac{{2\tan x + 1}}{{\sin x + 1}} = \frac{{2\tan \frac{\pi }{6} + 1}}{{\sin \frac{\pi }{6} + 1}} = \frac{{4\sqrt 3 + 6}}{9}\)

2.

Tập xác định \(D = \mathbb{R}\).

Với \(x \ne 1\) ta có \(f\left( x \right) = \frac{{{x^3} + 8x + m}}{{x - 1}} = {x^2} + x + 9 + \frac{{m + 9}}{{x - 1}}\).

\(f\left( x \right)\) liên tục tại \(x = 1\) khi và chỉ khi limx1f(x) = f(1) (1) 

Nếu \(m + 9 \ne 0 \Leftrightarrow m \ne - 9\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).

Do đó \(m + 9 = 0\)\( \Leftrightarrow m = - 9\). Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Vậy \(\left( 1 \right) \Leftrightarrow n = 11\), suy ra \(P = m + n = - 9 + 11 = 2\).

Câu 3

A. \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]    
B. \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]
C. \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]  
D. \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\mathbb{R}\backslash \left\{ {n\pi ,n \in \mathbb{Z}} \right\}\). 
B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + l2\pi ,l \in \mathbb{Z}} \right\}\).                                                           
C. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).      
D. \(\mathbb{R}\backslash \left\{ {\frac{{m\pi }}{2},m \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.,k \in \mathbb{Z}\].       
B. \[x = \pm \alpha + k2\pi ,\,\left( {k \in \mathbb{Z}} \right).\]
C. \[\left[ \begin{array}{l}x = \alpha + k\pi \\x = \pi - \alpha + k\pi \end{array} \right.,\left( {k \in \mathbb{Z}} \right)\].
D. \[x = \alpha + k\pi ,\,\left( {k \in \mathbb{Z}} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP