Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) và \(P\) là trọng tâm của tam giác \(BCD\).
a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SCD} \right).\)
b) Tìm giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\).
Quảng cáo
Trả lời:

a) Xét tam giác \(SAB\) có \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) nên \(MN\) là đường trung bình. Suy ra \[MN{\rm{//}}AB\] (Tính chất đường trung bình).
Lại có \(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành) nên \(MN{\rm{//}}CD,\) mà \(CD \subset \left( {SCD} \right)\).
Do đó, \(MN{\rm{//}}\left( {SCD} \right).\)
b) Vì \(P\) là trọng tâm của tam giác \(BCD\) nên \(P \in \left( {ABCD} \right)\).
Khi đó, hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm \(P\) chung.
Lại có \(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN\,{\rm{//}}\,AB\).
Do đó, giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua \(P\) và song song với \(MN,\,\,AB\).
Trong mặt phẳng \(\left( {ABCD} \right)\), qua điểm \(P\) kẻ \(EF{\rm{//}}AB\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C

Vì \(I,J\) lần lượt là trung điểm \(SA,SB\) nên \[IJ\] là đường trung bình của tam giác \(SAB\), do đó \(IJ\,{\rm{//}}\,AB\).
Tương tự, \(EF\) cũng là đường trung bình của tam giác \(SCD\) nên \[EF\,{\rm{//}}\,CD\].
Mà \[CD\,{\rm{// }}AB\] (đáy \(ABCD\) là hình bình hành).
Do đó, bốn đường thẳng \(AB,\,CD,\,EF,\,IJ\) đôi một song song với nhau.
Vậy đường thẳng \[IJ\] không song song với đường thẳng \[AD.\]
Lời giải
1.
a) \[\mathop {\lim }\limits_{n \to + \infty } \sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }}\]
\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n \left( {n + 1 - n} \right)}}{{\sqrt {n + 1} + \sqrt n }} = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt {n + 1} + \sqrt n }}\]
\[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}} + 1} \right)}} = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{n}} + 1}} = \frac{1}{2}\]. (0,5 điểm)
b) \(\mathop {\lim }\limits_{x \to \frac{\pi }{6}} \frac{{2\tan x + 1}}{{\sin x + 1}} = \frac{{2\tan \frac{\pi }{6} + 1}}{{\sin \frac{\pi }{6} + 1}} = \frac{{4\sqrt 3 + 6}}{9}\).
2.
Tập xác định \(D = \mathbb{R}\).
Với \(x \ne 1\) ta có \(f\left( x \right) = \frac{{{x^3} + 8x + m}}{{x - 1}} = {x^2} + x + 9 + \frac{{m + 9}}{{x - 1}}\).
\(f\left( x \right)\) liên tục tại \(x = 1\) khi và chỉ khi
Nếu \(m + 9 \ne 0 \Leftrightarrow m \ne - 9\) thì không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).
Do đó \(m + 9 = 0\)\( \Leftrightarrow m = - 9\). Suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).
Vậy \(\left( 1 \right) \Leftrightarrow n = 11\), suy ra \(P = m + n = - 9 + 11 = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
