Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) và \(P\) là trọng tâm của tam giác \(BCD\).
a) Chứng minh đường thẳng \(MN\) song song với mặt phẳng \(\left( {SCD} \right).\)
b) Tìm giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\).
Quảng cáo
Trả lời:

a) Xét tam giác \(SAB\) có \(M,\,\,N\) lần lượt là trung điểm của \(SA,\,\,SB\) nên \(MN\) là đường trung bình. Suy ra \[MN{\rm{//}}AB\] (Tính chất đường trung bình).
Lại có \(AB{\rm{//}}CD\) (do \(ABCD\) là hình bình hành) nên \(MN{\rm{//}}CD,\) mà \(CD \subset \left( {SCD} \right)\).
Do đó, \(MN{\rm{//}}\left( {SCD} \right).\)
b) Vì \(P\) là trọng tâm của tam giác \(BCD\) nên \(P \in \left( {ABCD} \right)\).
Khi đó, hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) có điểm \(P\) chung.
Lại có \(MN \subset \left( {MNP} \right);AB \subset \left( {ABCD} \right);MN\,{\rm{//}}\,AB\).
Do đó, giao tuyến của hai mặt phẳng \(\left( {MNP} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng qua \(P\) và song song với \(MN,\,\,AB\).
Trong mặt phẳng \(\left( {ABCD} \right)\), qua điểm \(P\) kẻ \(EF{\rm{//}}AB\left( {E \in AD;F \in BC} \right),\) khi đó ta có \(\left( {MNP} \right) \cap \left( {ABCD} \right) = EF.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
|
Thời gian (phút) |
\[\left[ {0;\,20} \right)\] |
\[\left[ {20;\,40} \right)\] |
\[\left[ {40;\,60} \right)\] |
\[\left[ {60;80} \right)\] |
\[\left[ {80;\,100} \right)\] |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Thời gian trung bình tập thể dục trong ngày của các học sinh khối 11 trên là
Lời giải
Đáp án đúng là: D
Trong mỗi khoảng thời gian, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
|
Thời gian (phút) |
10 |
30 |
50 |
70 |
90 |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Tổng số học sinh tham gia khảo sát là \(n = 42\). Thời gian trung bình tập thể dục trong ngày của các học sinh khối 11 trên là
\(\overline x = \frac{{5 \cdot 10 + 9 \cdot 30 + 12 \cdot 50 + 10 \cdot 70 + 6 \cdot 90}}{{42}} \approx 51,43\) (phút).
Lời giải
Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).
Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\) là \({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).
Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\) là \({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).
Cạnh của hình vuông \(\left( {{C_3}} \right)\) là \({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2}\).
Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\) là \({S_3} = {\left( {\frac{{{a_2}\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{S_2} = \frac{5}{8} \cdot \frac{5}{8}{S_1} = {\left( {\frac{5}{8}} \right)^2}{a^2}\).
Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân lùi vô hạn có \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\). Tổng của cấp số nhân lùi vô hạn này là
\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).
Mà \(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Khảo sát thời gian chơi thể thao trong một ngày của một số học sinh khối 11, thu được mẫu số liệu ghép nhóm sau:
|
Thời gian (phút) |
\[\left[ {0;\,20} \right)\] |
\[\left[ {20;\,40} \right)\] |
\[\left[ {40;\,60} \right)\] |
\[\left[ {60;80} \right)\] |
\[\left[ {80;\,100} \right)\] |
|
Số học sinh |
12 |
15 |
4 |
6 |
5 |
Giá trị đại diện của nhóm \[\left[ {40;\,60} \right)\]là
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
