Câu hỏi:
13/07/2024 6,183Tam giác ABC có các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Tam giác ABC phải có điều kiện gì thì tứ giác BHCK là:
a) Hình thoi? ; b) Hình chữ nhật?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: CE ⊥ AB (gt)
KB ⊥ AB (gt)
⇒ BK // CE (1)
Tương tự BH // KC (2)
Từ (1) và (2) ⇒ BHCK là hình bình hành.
Gọi M là giao điểm của hai đường chéo BC và HK.
a) Tam giác ABC có hai đường cao BD và CE cắt nhau tại H nên H là trực tâm tam giác ABC
⇒ AH ⊥ BC. (3)
BHCK là hình thoi
⇔ HM ⊥ BC ( trong đó M là giao điểm của hai đường chéo HK và BC) (4)
Từ (3) và (4) suy ra: A, H, M thẳng hàng.
Khi đó,tam giác ABC có AM là đường cao đồng thời là đường trung tuyến nên tam giác ABC là cân tại A.
b) BHCK là hình chữ nhật
Vậy BHCK là hình chữ nhật khi tam giác ABC vuông tại A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = 12cm, AD = 16cm, AA' = 25cm.
a) Chứng minh rằng các tứ giác ACCA', BDD'B' là những hình chữ nhật.
b) Chứng minh rằng AC'2 = AB2 + AD2 + AA'2.
c) Tính diện tích toàn phần và thể tích của hình hộp chữ nhật.
Câu 2:
Cho tam giác ABC và đường trung tuyến BM. Trên đoạn thẳng BM lấy điểm D sao cho BD/DM = 1/2. Tia AD cắt BC ở K. Tìm tỉ số diện tích của tam giác ABK và tam giác ABC.
Câu 3:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20cm, cạnh bên SA = 24cm.
a) Tính chiều cao SO rồi tính thể tích của hình chóp.
b) Tính diện tích toàn phần của hình chóp.
Câu 4:
Cho hình bình hành ABCD. Các điểm M, N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AN và DM, K là giao điểm BN và CM. Hình bình hình ABCD phải có điều kiện gì để tứ giác MENK là:
a) Hình thoi? ;
b) Hình chữ nhật?
c) Hình vuông?
Câu 5:
Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE.
Câu 6:
Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.
về câu hỏi!