Câu hỏi:

21/11/2025 47 Lưu

Với điều kiện nào của \[x\] thì phân thức \(\frac{{{{\left( {x - 1} \right)}^3}}}{{\left( {x - 2} \right)\left( {x + 3} \right)}}\) có nghĩa?        

A. \[x \le 2\].            
B. \(x \ne 2\,;\,\,x \ne - 3\).   
C. \[x = 2\].             
D. \[x \ne 2\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B

Để phân thức \(\frac{{{{\left( {x - 1} \right)}^3}}}{{\left( {x - 2} \right)\left( {x + 3} \right)}}\) có nghĩa thì \(\left( {x - 2} \right)\left( {x + 3} \right) \ne 0\) hay \(x \ne 2\,;\,\,x \ne - 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Cửa hàng đã thu thập dữ liệu được biểu diễn trong biểu đồ trên bằng phương pháp phỏng vấn 1 000 khách hàng. Đây là phương pháp thu thập trực tiếp.

b) Hãy chuyển đổi dữ liệu từ biểu đồ trên sang dạng bảng thống kê theo mẫu sau:

Món ăn

Tỉ lệ phần trăm

Phở

\[45\% \]

Bún bò

\[25\% \]

Bánh mì

\[18\% \]

Gỏi cuốn

\[12\% \]

c) Nếu cửa hàng muốn kinh doanh một món ẩm thực duy nhất thì cửa hàng nên ưu tiên chọn món Phở. Vì đây là món ăn được khách hàng lựa chọn nhiều nhất (chiếm \[45\% ).\]

Lời giải

Hướng dẫn giải

Ta có \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\]

Theo bài, \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\] nên suy ra \[ab + bc + ca = 0.\]

Đặt \[x = ab;y = bc;z = ca.\]

Khi đó \[x + y + z = 0.\] Suy ra \(x + y = - z;\,\,y + z = - x;\,\,z + x = - y.\)

Xét \[\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right)\]

\[ = \left( {1 + \frac{{ab}}{{bc}}} \right)\left( {1 + \frac{{bc}}{{ca}}} \right)\left( {1 + \frac{{ca}}{{ab}}} \right)\]

\[ = \left( {1 + \frac{x}{y}} \right)\left( {1 + \frac{y}{z}} \right)\left( {1 + \frac{z}{x}} \right)\]

\[ = \left( {\frac{{y + x}}{y}} \right)\left( {\frac{{z + y}}{z}} \right)\left( {\frac{{x + z}}{x}} \right)\]

\[ = \frac{{ - z}}{y}.\frac{{ - x}}{z}.\frac{{ - y}}{x} = - 1.\]

Xét \[\frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}}\]\[ = \frac{{{{\left( {ab} \right)}^3} + {{\left( {bc} \right)}^3} + {{\left( {ca} \right)}^3}}}{{3ab \cdot bc \cdot ca}}\]

\[ = \frac{{{x^3} + {y^3} + {z^3}}}{{3xyz}}\]\[ = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3}}}{{3xyz}}\]

\[ = \frac{{{{\left( { - z} \right)}^3} - 3xy\left( { - z} \right) + {z^3}}}{{3xyz}}\]\[ = \frac{{ - {z^3} + 3xyz + {z^3}}}{{3xyz}} = \frac{{3xyz}}{{3xyz}} = 1.\]

Từ đó, \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = 1 + \left( { - 1} \right) = 0.\]

Vậy \(T = 0.\)

Câu 3

A. \[{\rm{25}}\sqrt {\rm{3}} \;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].                 
B. \[\frac{{{\rm{125}}\sqrt {\rm{3}} }}{{\rm{4}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].                     
C. \[\frac{{{\rm{25}}\sqrt {\rm{3}} }}{{\rm{3}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].                     
D. \[\frac{{{\rm{25}}\sqrt {\rm{3}} }}{{{\rm{14}}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\rm{50}}\;{\rm{cm}}\).                  
B. \({\rm{5}}\;{\rm{cm}}\). 
C. \[{\rm{25}}\;{\rm{cm}}\].                               
D. \({\rm{5}}\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP