Cho hình chóp tam giác đều, biết chiều cao của hình chóp là \({\rm{4}}\;{\rm{cm}}\), tam giác đáy có cạnh \({\rm{5}}\;{\rm{cm}}\) và chiều cao \(\frac{{5\sqrt 3 }}{2}\;{\rm{cm}}\). Thể tích của khối chóp tam giác đều đó là
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C
Diện tích tam giác đáy là:
\(S = \frac{1}{2} \cdot \frac{{5\sqrt 3 }}{2} \cdot 5 = \frac{{25\sqrt 3 }}{4}\,\;\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Thể tích khối chóp tam giác đều là:
\(V = \frac{1}{3}S.h = \frac{1}{3}.\frac{{25\sqrt 3 }}{4}.4 = \frac{{25\sqrt 3 }}{3}\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Vậy thể tích của khối chóp tam giác đều là \[\frac{{25\sqrt 3 }}{3}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Ta có \[V = \frac{1}{3}S.h\] nên \[S = \frac{{3V}}{h} = \frac{{3 \cdot 50}}{9} = 25{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\].
Vì đáy của hình chóp tứ giác đều cạnh a là hình vuông nên độ dài cạnh đáy là \[a = \sqrt {25} = 5{\rm{ }}\left( {{\rm{cm}}} \right)\].
Vậy độ dài cạnh đáy của hình chóp đó là \({\rm{5}}\;{\rm{cm}}\).
Lời giải
Hướng dẫn giải:
|
a) \[\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\] \[ = 4{x^3}{y^2}:\left( {2xy} \right) - 8{x^2}y:\left( {2xy} \right) + 10xy:\left( {2xy} \right)\] \[ = {\rm{ }}2{x^2}y - 4x + 5.\]
|
b) \[\left( {3 - x} \right)\left( {3 + x} \right) + {\left( {x--5} \right)^2}\] \[ = \left( {9 - {x^2}} \right) + \left( {{x^2} - 10x + 25} \right)\] \[ = 9 - {x^2} + {x^2} - 10x + 25\] \[ = \left( {{x^2} - {x^2}} \right) - 10x + \left( {25 + 9} \right)\] \[ = - 10x + 34\]. |
c) \[\frac{x}{{x + 1}} + \frac{{2x + 5}}{{x - 1}} - \frac{{3{x^2} - 1}}{{{x^2} - 1}}\]
\[ = \frac{x}{{x + 1}} + \frac{{2x + 5}}{{x - 1}} - \frac{{3{x^2} - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]
\[ = \frac{{x\left( {x - 1} \right) + \left( {2x + 5} \right)\left( {x + 1} \right) - \left( {3{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]
\[ = \frac{{{x^2} - x + 2{x^2} + 2x + 5x + 5 - 3{x^2} + 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]
\[ = \frac{{6x + 6}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{6\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{6}{{x - 1}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
