(0,5 điểm) Cho ba số \[a,\,\,b,\,\,c\] đôi một khác nhau và thỏa mãn:
\[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}.\]
Tính giá trị biểu thức \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right).\]
(0,5 điểm) Cho ba số \[a,\,\,b,\,\,c\] đôi một khác nhau và thỏa mãn:
\[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}.\]
Tính giá trị biểu thức \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right).\]
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\]
Theo bài, \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2}\] nên suy ra \[ab + bc + ca = 0.\]
Đặt \[x = ab;y = bc;z = ca.\]
Khi đó \[x + y + z = 0.\] Suy ra \(x + y = - z;\,\,y + z = - x;\,\,z + x = - y.\)
Xét \[\left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right)\]
\[ = \left( {1 + \frac{{ab}}{{bc}}} \right)\left( {1 + \frac{{bc}}{{ca}}} \right)\left( {1 + \frac{{ca}}{{ab}}} \right)\]
\[ = \left( {1 + \frac{x}{y}} \right)\left( {1 + \frac{y}{z}} \right)\left( {1 + \frac{z}{x}} \right)\]
\[ = \left( {\frac{{y + x}}{y}} \right)\left( {\frac{{z + y}}{z}} \right)\left( {\frac{{x + z}}{x}} \right)\]
\[ = \frac{{ - z}}{y}.\frac{{ - x}}{z}.\frac{{ - y}}{x} = - 1.\]
Xét \[\frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} = \frac{{{x^3} + {y^3} + {z^3}}}{{3xyz}}\]
\[ = \frac{{{{\left( {x + y} \right)}^3} - 3xy\left( {x + y} \right) + {z^3}}}{{3xyz}}\]
\[ = \frac{{{{\left( { - z} \right)}^3} - 3xy\left( { - z} \right) + {z^3}}}{{3xyz}}\]
\[ = \frac{{ - {z^3} + 3xyz + {z^3}}}{{3xyz}} = \frac{{3xyz}}{{3xyz}} = 1.\]
Từ đó, \[T = \frac{{{a^3}{b^3} + {b^3}{c^3} + {c^3}{a^3}}}{{3{a^2}{b^2}{c^2}}} + \left( {1 + \frac{a}{c}} \right)\left( {1 + \frac{b}{a}} \right)\left( {1 + \frac{c}{b}} \right) = 1 + \left( { - 1} \right) = 0.\]
Vậy \(T = 0.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Diện tích tam giác đáy là:
\(S = \frac{1}{2} \cdot \frac{{5\sqrt 3 }}{2} \cdot 5 = \frac{{25\sqrt 3 }}{4}\,\;\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Thể tích khối chóp tam giác đều là:
\(V = \frac{1}{3}S.h = \frac{1}{3}.\frac{{25\sqrt 3 }}{4}.4 = \frac{{25\sqrt 3 }}{3}\;\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).
Vậy thể tích của khối chóp tam giác đều là \[\frac{{25\sqrt 3 }}{3}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}.\]
Lời giải
Hướng dẫn giải:
|
a) \[\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\] \[ = 4{x^3}{y^2}:\left( {2xy} \right) - 8{x^2}y:\left( {2xy} \right) + 10xy:\left( {2xy} \right)\] \[ = {\rm{ }}2{x^2}y - 4x + 5.\]
|
b) \[\left( {3 - x} \right)\left( {3 + x} \right) + {\left( {x--5} \right)^2}\] \[ = \left( {9 - {x^2}} \right) + \left( {{x^2} - 10x + 25} \right)\] \[ = 9 - {x^2} + {x^2} - 10x + 25\] \[ = \left( {{x^2} - {x^2}} \right) - 10x + \left( {25 + 9} \right)\] \[ = - 10x + 34\]. |
c) \[\frac{x}{{x + 1}} + \frac{{2x + 5}}{{x - 1}} - \frac{{3{x^2} - 1}}{{{x^2} - 1}}\]
\[ = \frac{x}{{x + 1}} + \frac{{2x + 5}}{{x - 1}} - \frac{{3{x^2} - 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]
\[ = \frac{{x\left( {x - 1} \right) + \left( {2x + 5} \right)\left( {x + 1} \right) - \left( {3{x^2} - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]
\[ = \frac{{{x^2} - x + 2{x^2} + 2x + 5x + 5 - 3{x^2} + 1}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\]
\[ = \frac{{6x + 6}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{6\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{6}{{x - 1}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
