Câu hỏi:

21/11/2025 7 Lưu

Các dấu hiệu nhận biết sau, dấu hiệu nào không đủ để kết luận một hình vuông?

A. Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.
B. Hình thoi có một góc vuông là hình vuông.
C. Hình thoi có hai đường chéo vuông góc là hình vuông.
D. Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Các phương án A, B, D là các khẳng định đúng theo dấu hiệu nhận biết hình vuông.

Phương án C sai vì hình thoi đã có sẵn hai đường chéo vuông góc, hình thoi cần có hai đường chéo bằng nhau thì mới là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x = - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

Suy ra \(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x = - 5\)

\(x = 3\) hoặc \(x = - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

Lời giải

Hướng dẫn giải

a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)

Điều kiện xác định của biểu thức \(P\)\(x - 1 \ne 0,\) \(x + 1 \ne 0,\) \(x \ne 0\) hay \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

Vậy điều kiện xác định của biểu thức \(P\)\(x \ne 1,\) \(x \ne - 1\)\(x \ne 0.\)

b) Với điều kiện \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có:

\(P = \left( {\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{{{x^2} - 3x}}{{{x^2} - 1}}} \right) \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + 2x + 1 - \left( {{x^2} - 2x + 1} \right) + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{4x + {x^2} - 3x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\( = \frac{{{x^2} + x}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x + 4}}{x}\)

\[ = \frac{{x\left( {x + 1} \right) \cdot \left( {x + 4} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right) \cdot x}}\]\[ = \frac{{x + 4}}{{x - 1}}.\]

Vậy với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) thì \[P = \frac{{x + 4}}{{x - 1}}.\]

c) Với \(x \ne 1,\) \(x \ne - 1\)\(x \ne 0,\) ta có \[P = \frac{{x + 4}}{{x - 1}} = \frac{{x - 1 + 5}}{{x - 1}} = 1 + \frac{5}{{x - 1}}.\]

Với \(x\) nguyên, để \(P\) đạt giá trị nguyên thì \(\frac{{2025}}{{x - 1}}\) là số nguyên.

Do đó \(5\,\, \vdots \,\,\left( {x - 1} \right)\) hay \(x - 1 \in \) Ư\(\left( 5 \right) = \left\{ {1\,;\,\, - 1\,;\,\,5\,;\,\, - 5} \right\}.\)

Ta có bảng sau:

\(x - 1\)

\(1\)

\( - 1\)

\(5\)

\( - 5\)

\(x\)

\(2\) (TM)

\(0\) (TM)

\(6\) (TM)

\( - \,4\)(TM)

Vậy để \(P\) nhận giá trị nguyên  thì \(x \in \left\{ {1\,;\,\,0\,;\,\,6\,;\,\, - 4} \right\}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({S_{xq}} = 2ab.\)                             
B. \({S_{xq}} = ab.\) 
C. \({S_{xq}} = \frac{1}{2}ab.\)             
D. \({S_{xq}} = 4ab.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[7y\].                  
B. \[7xy\].                
C. \[7x\].                               
D. \[7{x^2}y\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP