(1,5 điểm) Cho biểu thức \(N = \left( {\frac{1}{{x + 1}} + \frac{1}{{x - 1}} + \frac{{{x^2}}}{{{x^2} - 1}}} \right) \cdot \frac{{x - 1}}{{2 + x}}.\)
a) Viết điều kiện xác định của biểu thức \(N.\)
b) Rút gọn biểu thức \(N.\)
c) Tính giá trị của biểu thức \(N\) khi \(\left| x \right| = 2.\)
(1,5 điểm) Cho biểu thức \(N = \left( {\frac{1}{{x + 1}} + \frac{1}{{x - 1}} + \frac{{{x^2}}}{{{x^2} - 1}}} \right) \cdot \frac{{x - 1}}{{2 + x}}.\)
a) Viết điều kiện xác định của biểu thức \(N.\)
b) Rút gọn biểu thức \(N.\)
c) Tính giá trị của biểu thức \(N\) khi \(\left| x \right| = 2.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right).\)
Điều kiện xác định của biểu thức \(N\) là \(x + 1 \ne 0,\) \(x - 1 \ne 0,\) \(2 + x \ne 0\) và \({x^2} - 1 \ne 0\)
Hay \(x \ne - 1,\)\(x \ne 1\) và \(x \ne - 2.\)
Vậy biểu thức \(N\) xác định khi \(x \ne - 1,\) \(x \ne 1\) và \(x \ne - 2.\)
b) Với \(x \ne - 1,\) \(x \ne 1\) và \(x \ne - 2,\) ta có:
\(N = \left( {\frac{1}{{x + 1}} + \frac{1}{{x - 1}} + \frac{{{x^2}}}{{{x^2} - 1}}} \right) \cdot \frac{{x - 1}}{{2 + x}}\)
\[ = \frac{1}{{x + 1}} \cdot \frac{{x - 1}}{{2 + x}} + \frac{1}{{x - 1}} \cdot \frac{{x - 1}}{{2 + x}} + \frac{{{x^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cdot \frac{{x - 1}}{{2 + x}}\]
\[ = \frac{{x - 1}}{{\left( {x + 1} \right)\left( {2 + x} \right)}} + \frac{1}{{2 + x}} + \frac{{{x^2}}}{{\left( {x + 1} \right)\left( {2 + x} \right)}}\]
\[ = \frac{{x - 1 + x + 1 + {x^2}}}{{\left( {x + 1} \right)\left( {2 + x} \right)}}\]
\[ = \frac{{{x^2} + 2x}}{{\left( {x + 1} \right)\left( {x + 2} \right)}}\]
\[ = \frac{{x\left( {x + 2} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \frac{x}{{x + 1}}.\]
Vậy với \(x \ne - 1,\) \(x \ne 1\) và \(x \ne - 2,\) thì \(N = \frac{x}{{x + 1}}.\)
c) Ta có \(\left| x \right| = 2\) suy ra \(x = 2\) (thỏa mãn điều kiện) hoặc \(x = - 2\) (không thỏa mãn điều kiện).
Thay \(x = 2\) vào biểu thức \(N = \frac{x}{{x + 1}},\) ta được:
\(N = \frac{2}{{2 + 1}} = \frac{2}{3}.\)
Vậy \(N = \frac{2}{3}\) khi \(\left| x \right| = 2.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Với điều kiện phân thức có nghĩa, ta có \[\frac{{ - 2xy}}{{6{x^3}{y^2}}} = \frac{{2xy \cdot \left( { - 1} \right)}}{{2xy \cdot 3{x^2}y}} = \frac{{ - 1}}{{3{x^2}y}}.\]
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Công thức tính thể tích hình chóp tứ giác đều là: \(V = \frac{1}{3}Sh.\)
Suy ra diện tích đáy của hình chóp tứ giác đều là: \(S = \frac{{3V}}{h}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

