(1,0 điểm) Quan sát biểu đồ dưới đây và các trả lời câu hỏi sau:

a) Biểu đồ trên cho biết thông tin gì?
b) Trong 8 tháng đầu năm 2022, tỉ lệ phần trăm xuất khẩu gạo của Việt Nam ở thị trường nước nào là lớn nhất, thị trường nước nào nhỏ nhất?
(1,0 điểm) Quan sát biểu đồ dưới đây và các trả lời câu hỏi sau:

a) Biểu đồ trên cho biết thông tin gì?
b) Trong 8 tháng đầu năm 2022, tỉ lệ phần trăm xuất khẩu gạo của Việt Nam ở thị trường nước nào là lớn nhất, thị trường nước nào nhỏ nhất?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 7 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
a) Biểu đồ trên cho biết tỉ lệ phần trăm các thị trường xuất khẩu gạo của Việt Nam trong 8 tháng đầu năm 2022.
b) Quan sát biểu đồ, ta thấy trong 8 tháng đầu năm 2022:
• Tỉ lệ phần trăm xuất khẩu gạo của Việt Nam ở thị trường Philipin là lớn nhất (46%);
• Tỉ lệ phần trăm xuất khẩu gạo của Việt Nam ở thị trường Bờ Biển Ngà là nhỏ nhất (9%).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tiền ban đầu là \({T_0}\).
Lãi suất theo kì hạn là \(r\).
Số tiền rút ra sau \(n\) kì hạn là: \({T_n} = {T_0}{(1 + r)^n}\).
Do kì hạn 3 tháng nên 2 năm tương ứng với số kì hạn là:
\(n = 2\,\,.\,\,12:3 = 8\) (kì hạn).
Với \({T_0} = 50{\rm{ }}000{\rm{ }}000\) đồng, \(r = 1,5\% \), \(n = 8\), ta được số tiền cô Liên rút được sau 2 năm là:
\(50{\rm{ }}000{\rm{ }}000\,.\,\,{(1 + 1,5)^8} \approx 76\,\,294\,\,000\) (đồng).
Vậy số tiền cô Liên rút được sau 2 năm khoảng 76 294 000 đồng.
Lời giải

a) Theo đề bài, đường trung trực của cạnh \(AC\) cắt tia \(CB\) tại điểm \(D\).
Suy ra \(D\) thuộc đường trung trực của \(AC\) nên \(DA = DC\).
Do đó tam giác \(ADC\) có \(DA = DC\) nên tam giác \(ADC\) cân tại \(D\).
b) Vì tam giác \(ADC\) cân nên \(\widehat {DAC} = \widehat {DCA}\) (1)
Vì \(AB = AC\) nên \(\widehat {ABC} = \widehat {DCA}\) (2)
Từ (1) và (2) suy ra \(\widehat {DAC} = \widehat {ABC}\).
Ta có \(\widehat {EAC} + \widehat {DAC} = 180^\circ \); \(\widehat {DBA} + \widehat {ABC} = 180^\circ \) (hai góc kề bù)
Mà \(\widehat {DAC} = \widehat {DCA}\) nên \(\widehat {EAC} = \widehat {ABD}\) (đpcm).
c) Xét \(\Delta ABD\) và \(\Delta CAE\) có:
\(AE = BD\) (giả thiết);
\(\widehat {EAC} = \widehat {ABD}\) (chứng minh trên);
\(AB = AC\) (vì tam giác \(ABC\) cân tại \(A\)).
Do đó \(\Delta ABD = \Delta CAE\) (c.g.c).
Suy ra \(AD = CE\) (hai cạnh tương ứng).
Mà \(DA = DC\) (chứng minh trên) nên \(CE = CD\).
Mà \(FD = FE\) (\(F\) là trung điểm \(DE\))
Do đó \(CF\) là đường trung trực của \(DE\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

