Câu hỏi:

23/11/2025 6 Lưu

Cho các phát biểu sau:

\[\left( I \right)\] Nếu hai đường thẳng \[AB\]\[AC\] cùng vuông góc với đường thẳng \(d\) thì hai đường thẳng \[AB\]\[AC\] trùng nhau.

\[\left( {II} \right)\] Nếu hai đường thẳng \[AB\]\[AC\] cùng song song với đường thẳng \(d\) thì hai đường thẳng \[AB\]\[AC\] song song với nhau;

Chọn phát biểu đúng:

A. Chỉ \[\left( I \right)\]đúng;                 
B. Chỉ \[\left( {II} \right)\] đúng;        
C. Cả \[\left( I \right)\]\[\left( {II} \right)\] đều đúng;        
D. Cả \[\left( I \right)\]\[\left( {II} \right)\] đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

• Hai đường thẳng \[AB\]\[AC\] cùng đi qua điểm \(A\) và vuông góc với đường thẳng \(d\) nên hai đường thẳng \[AB\]\[AC\] trùng nhau.

• Hai đường thẳng \[AB\]\[AC\] cùng đi qua điểm \(A\) và song song với đường thẳng \(d\) nên theo tiên đề Euclid, hai đường thẳng \[AB\]\[AC\] trùng nhau.

Vậy chỉ có \(\left( {II} \right)\) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

(2,0 điểm) Cho hình vẽ bên.

Cho hình vẽ bên. (ảnh 1)

Biết \(Bn\,{\rm{//}}\,Cp\), \[\widehat {BAm} = 140^\circ \], \(\widehat {ABn} = 40^\circ \), \(\widehat {ACp} = 140^\circ \).

a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận của bài toán.

b) Giải thích tại sao hai tia \(Am\)\(Bn\) song song với nhau.

c) Tính số đo của \(\widehat {BAC}\).

d) Vẽ tia \(Cr\) nằm trong góc \(\widehat {ACp}\) sao cho \(\widehat {rCp} = 40^\circ \). Chứng minh \(Cr\,{\rm{//}}\,Aq\).

Lời giải

a) Học sinh vẽ lại hình theo đúng số đo các góc.

GT

\(Bn\,{\rm{//}}\,Cp\), \[\widehat {BAm} = 140^\circ \],

\(\widehat {ABn} = 40^\circ \), \(\widehat {ACp} = 140^\circ \).

d) Tia \(Cr\) nằm trong góc \(\widehat {ACp}\),

\(\widehat {rCp} = 40^\circ \).

KL

b) Giải thích \(Am\,{\rm{//}}\,Bn\);

c) Tính số đo của \(\widehat {BAC}\);

d) Chứng minh \(Cr\,{\rm{//}}\,Aq\) .

b) Ta có \(\widehat {ABn} + \widehat {nBq} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {nBq} = 180^\circ - \widehat {ABn} = 180^\circ - 40^\circ = 140^\circ \)

Do đó \(\widehat {BAm} = \widehat {nBq}\) (cùng bằng \(140^\circ \))

Mà hai góc này ở vị trí đồng vị

Do đó \(Am\,{\rm{//}}\,Bn\) (dấu hiệu nhận biết).

c) Ta có \(Am\,{\rm{//}}\,Bn\) (câu b) và \(Bn\,{\rm{//}}\,Cp\) (giả thiết)

Do đó \(Am\,{\rm{//}}\,Cp\).

Suy ra \(\widehat {ACp} = \widehat {CAm} = 130^\circ \) (so le trong).

Ta có \(\widehat {BAm} + \widehat {CAm} + \widehat {BAC} = 360^\circ \).

Vậy \(\widehat {BAC} = 360^\circ - \widehat {BAm} - \widehat {CAm} = 90^\circ \).

d) Ta có \(\widehat {ACp} = \widehat {ACr} + \widehat {rCp}\)

Suy ra \(\widehat {ACr} = \widehat {ACp} - \widehat {rCp} = 130^\circ - 40^\circ = 90^\circ \)

Hay \(AC \bot Cr\)

\(\widehat {BAC} = 90^\circ \) (câu c) hay\(AC \bot Aq\).

Do đó \(Cr\,{\rm{//}}\,Aq\).

Câu 2

A. \( - \frac{3}{2};\frac{0}{7};\frac{7}{0};\frac{{ - 2}}{{ - 5}}\);                                                              
B. \(1\frac{2}{7};\frac{0}{7};\frac{7}{0};\frac{{ - 2}}{{ - 5}}\);                                        
C. \( - \frac{3}{2};1\frac{2}{7};\frac{7}{0};\frac{{ - 2}}{{ - 5}}\);                                                              
D. \( - \frac{3}{2};1\frac{2}{7};\frac{0}{7};\frac{{ - 2}}{{ - 5}}\).

Lời giải

Đáp án đúng là: D

Trong các số \( - \frac{3}{2};1\frac{2}{7};\frac{0}{7};\frac{7}{0};\frac{{ - 2}}{{ - 5}}\)\(\frac{7}{0}\) không phải là số hữu tỉ.

Vậy dãy các số hữu tỉ là \( - \frac{3}{2};1\frac{2}{7};\frac{0}{7};\frac{{ - 2}}{{ - 5}}\).

Câu 3

A. \(y = \frac{{30}}{x}\);                        
B. \(y = \frac{{ - 30}}{x}\);                         
C. \(y = \frac{1}{{30}}x\);            
D. \(y = \frac{{ - 1}}{{30}}x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - \frac{4}{9}\);                               
B. \[ - \frac{2}{9}\];                   
C. \[\frac{2}{9}\];   
D. \[\frac{4}{9}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Điểm \(A\);                                                

B. Điểm \[B\];                                                                                
C. Điểm \(A\) hoặc điểm \[B\];               
D. Điểm \(A\) và điểm \[B\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP