Câu hỏi:

24/11/2025 5 Lưu

Cho đường thẳng \[a\] nằm trong mặt phẳng \[\left( \alpha \right)\]. Giả sử \[b \not\subset \left( \alpha \right)\]. Mệnh đề nào sau đây đúng?

A. Nếu \[b\,{\rm{//}}\,\left( \alpha \right)\] thì \[b\,{\rm{//}}\,a\].
B. Nếu \[b\] cắt \[\left( \alpha \right)\] thì \[b\] cắt \[a\].
C. Nếu \[b\,{\rm{//}}\,a\] thì \[b\,{\rm{//}}\,\left( \alpha \right)\].
D. Nếu \(b\,{\rm{//}}\,\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \[b\] thì \(\left( \beta \right)\) sẽ cắt \[\left( \alpha \right)\] theo giao tuyến là đường thẳng \[d\] song song với \[a\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \(\left\{ \begin{array}{l}b \not\subset \left( \alpha  \right)\\b\,{\rm{//}}\,a\\a \subset \left( \alpha  \right)\end{array} \right.\)\( \Rightarrow b\,{\rm{//}}\,\left( \alpha  \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Vì \(\pi  < \alpha  < \frac{{3\pi }}{2} \Rightarrow \sin \alpha  < 0\).

\(\sin \alpha  =  - \sqrt {1 - {{\cos }^2}\alpha }  =  - \sqrt {1 - {{\left( { - \frac{4}{5}} \right)}^2}}  =  - \frac{3}{5}\).

\(\tan \left( {\alpha  - \frac{\pi }{4}} \right) = \frac{{\tan \alpha  - 1}}{{1 + \tan \alpha }} = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}}{{1 + \frac{{\sin \alpha }}{{\cos \alpha }}}}\)\( = \frac{{\frac{3}{4} - 1}}{{1 + \frac{3}{4}}} =  - \frac{1}{7}\).

Lời giải

Cho hình chóp \(S.ABCD\) có đá (ảnh 1)

Gọi \[I\] là giao điểm của \[MN\] và \[SO\]. Nối \[P\] với \[I\] kéo dài sẽ cắt \[SD\], \[BD\] theo thứ tự tại \[Q\] và \[E\].

Từ \[B\] kẻ đường thẳng song song với \[SO\], \[SD\] cắt \[EQ\] lần lượt tại \[H\], \[K\].

Vì \[BH\,{\rm{//}}\,SI\] nên \(\frac{{BH}}{{SI}} = \frac{{BP}}{{SP}} = \frac{1}{2};\,\,SI = IO \Rightarrow \frac{{BH}}{{OI}} = \frac{1}{2} \Rightarrow \frac{{BE}}{{OE}} = \frac{{BH}}{{OI}} = \frac{1}{2} \Rightarrow \frac{{BE}}{{ED}} = \frac{1}{3}\).

Vì \[BK\,{\rm{//}}\,SQ\] nên \(\left\{ \begin{array}{l}\frac{{BK}}{{SQ}} = \frac{{BP}}{{SP}} = \frac{1}{2} \Rightarrow SQ = 2BK;\\\frac{{BK}}{{DQ}} = \frac{{BE}}{{ED}} = \frac{1}{3} \Rightarrow DQ = 3BK\end{array} \right.\,\, \Rightarrow \frac{{SQ}}{{DQ}} = \frac{2}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{2}{5}\).

Vậy \(\frac{{SQ}}{{SD}} = \frac{2}{5}\).

Câu 5

A. \(\cos \alpha = - \frac{3}{5}\).          
B. \(\cos \alpha = \frac{1}{5}\).                             
C. \(\cos \alpha = \frac{3}{5}\).                             
D. \(\cos \alpha = - \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left\{ {\frac{\pi }{3} + k2\pi |k \in \mathbb{Z}} \right\}\].                   
B. \[\emptyset \].    
C. \[\left\{ {\frac{\pi }{3} + k\pi |k \in \mathbb{Z}} \right\}\].                   
D. \[\left\{ {\frac{\pi }{6} + k\pi |k \in \mathbb{Z}} \right\}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2\sin 2x = 1\).    
B. \(2\cos 2x = 1\).  
C. \(2\sin x = 1\).                          
D. \(2\cos x = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP