(0,5 điểm) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SA\) và \(SC\). Điểm \(P\) trên cạnh \(SB\) sao cho \(\frac{{SP}}{{SB}} = \frac{2}{3}\). Gọi \(Q\) là giao điểm của cạnh \(SD\) và mặt phẳng \(\left( {MNP} \right)\). Tính tỷ số \(\frac{{SQ}}{{SD}}\).
(0,5 điểm) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M,\,\,N\) lần lượt là trung điểm của các cạnh \(SA\) và \(SC\). Điểm \(P\) trên cạnh \(SB\) sao cho \(\frac{{SP}}{{SB}} = \frac{2}{3}\). Gọi \(Q\) là giao điểm của cạnh \(SD\) và mặt phẳng \(\left( {MNP} \right)\). Tính tỷ số \(\frac{{SQ}}{{SD}}\).
Quảng cáo
Trả lời:

Gọi \[I\] là giao điểm của \[MN\] và \[SO\]. Nối \[P\] với \[I\] kéo dài sẽ cắt \[SD\], \[BD\] theo thứ tự tại \[Q\] và \[E\].
Từ \[B\] kẻ đường thẳng song song với \[SO\], \[SD\] cắt \[EQ\] lần lượt tại \[H\], \[K\].
Vì \[BH\,{\rm{//}}\,SI\] nên \(\frac{{BH}}{{SI}} = \frac{{BP}}{{SP}} = \frac{1}{2};\,\,SI = IO \Rightarrow \frac{{BH}}{{OI}} = \frac{1}{2} \Rightarrow \frac{{BE}}{{OE}} = \frac{{BH}}{{OI}} = \frac{1}{2} \Rightarrow \frac{{BE}}{{ED}} = \frac{1}{3}\).
Vì \[BK\,{\rm{//}}\,SQ\] nên \(\left\{ \begin{array}{l}\frac{{BK}}{{SQ}} = \frac{{BP}}{{SP}} = \frac{1}{2} \Rightarrow SQ = 2BK;\\\frac{{BK}}{{DQ}} = \frac{{BE}}{{ED}} = \frac{1}{3} \Rightarrow DQ = 3BK\end{array} \right.\,\, \Rightarrow \frac{{SQ}}{{DQ}} = \frac{2}{3} \Rightarrow \frac{{SQ}}{{SD}} = \frac{2}{5}\).
Vậy \(\frac{{SQ}}{{SD}} = \frac{2}{5}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Vì \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \sin \alpha < 0\).
\(\sin \alpha = - \sqrt {1 - {{\cos }^2}\alpha } = - \sqrt {1 - {{\left( { - \frac{4}{5}} \right)}^2}} = - \frac{3}{5}\).
\(\tan \left( {\alpha - \frac{\pi }{4}} \right) = \frac{{\tan \alpha - 1}}{{1 + \tan \alpha }} = \frac{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}}{{1 + \frac{{\sin \alpha }}{{\cos \alpha }}}}\)\( = \frac{{\frac{3}{4} - 1}}{{1 + \frac{3}{4}}} = - \frac{1}{7}\).
Lời giải

Xét ba mặt phẳng phân biệt: \(\left( {MCD} \right),\left( {ABCD} \right),\left( {SAB} \right)\).
Mà ba mặt phẳng cắt nhau theo ba giao tuyến phân biệt là:
\(\left( {MCD} \right) \cap \left( {ABCD} \right) = CD;\left( {ABCD} \right) \cap \left( {SAB} \right) = AB;\left( {MCD} \right) \cap \left( {SAB} \right) = MN\).
Trong đó \[AB\,{\rm{//}}\,CD\], theo định lý về ba đường giao tuyến ta có \[AB\,{\rm{//}}\,CD\,{\rm{//}}\,MN\].
Trong tam giác \[SAB\] từ \[M\] kẻ đường thẳng song song với \[AB\] cắt \[SB\] tại \[N\].
Vậy \[N\] là điểm cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Phương trình nào dưới đây có tập nghiệm biểu diễn trên đường tròn lượng giác là 2 điểm \(M\), \(N\)?

Phương trình nào dưới đây có tập nghiệm biểu diễn trên đường tròn lượng giác là 2 điểm \(M\), \(N\)?

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.