Cho phương trình \(2ax - \left( {3b + 1} \right)y = a - 1.\)
a) Với giá trị nào của \(a\), \(b\) thì phương trình trên là phương trình bậc nhất hai ẩn?
b) Gọi \(d\) là đường thẳng biểu diễn tất cả các nghiệm của phương trình đã cho. Tìm các giá trị \(a\) và \(b\) để đường thẳng \(d\) đi qua hai điểm \(M\left( { - 7;6} \right)\) và \(N\left( {4; - 3} \right)\).
Cho phương trình \(2ax - \left( {3b + 1} \right)y = a - 1.\)
a) Với giá trị nào của \(a\), \(b\) thì phương trình trên là phương trình bậc nhất hai ẩn?
b) Gọi \(d\) là đường thẳng biểu diễn tất cả các nghiệm của phương trình đã cho. Tìm các giá trị \(a\) và \(b\) để đường thẳng \(d\) đi qua hai điểm \(M\left( { - 7;6} \right)\) và \(N\left( {4; - 3} \right)\).
Quảng cáo
Trả lời:
a) Để phương trình đã cho là phương trình bậc nhất hai ẩn thì \(2a \ne 0\) hoặc \( - \left( {3b + 1} \right) \ne 0,\) tức là \(a \ne 0\) hoặc \(b \ne - \frac{1}{3}.\)
b) Để đường thẳng \(d\) đi qua điểm \(M\left( { - 7;6} \right)\) thì tọa độ điểm \(M\) thỏa mãn phương trình đã cho.
Thay \(x = - 7;\,\,y = 6\) vào phương trình \(2ax - \left( {3b + 1} \right)y = a - 1,\) ta được:
\[2a \cdot \left( { - 7} \right) - \left( {3b + 1} \right) \cdot 6 = a - 1\]
\( - 14a - 18b - 6 = a - 1\)
\( - 15a - 18b = 5\) (1)
Để đường thẳng \(d\) đi qua điểm \(N\left( {4; - 3} \right)\) thì tọa độ điểm \(N\) thỏa mãn phương trình đã cho.
Thay \(x = 4;y = - 3\) vào phương trình \(2ax - \left( {3b + 1} \right)y = a - 1,\) ta được:
\[2a \cdot 4 - \left( {3b + 1} \right) \cdot \left( { - 3} \right) = a - 1\]
\(8a + 9b + 3 = a - 1\)
\(7a + 9b = - 4\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 15a - 18b = 5}\\{7a + 9b = - 4}\end{array}} \right.\)
Nhân hai vế phương trình thứ hai với 2 ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 15a - 18b = 5}\\{14a + 18b = - 8}\end{array}} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được:
\(\left( { - 15a - 18b} \right) + \left( {14a + 18b} \right) = 5 + \left( { - 8} \right)\)
\( - a = - 3\)
\(a = 3\).
Thay \(a = 3\) vào phương trình \(7a + 9b = - 4,\) ta có:
\(7 \cdot 3 + 9b = - 4\) hay \(9b = - 25\) nên \(b = - \frac{{25}}{9}.\)
Vậy \(a = 3\) và \(b = - \frac{{25}}{9}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).
Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).
Xét \(\Delta BDE\) vuông tại \(B,\) ta có:
\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)
Lời giải
a) Số câu trả lời sai là: \(10 - x\) (câu).
Số điểm người đó có được khi trả lời đúng \(x\) (câu) là: \(5x\) (điểm).
Số điểm người đó bị trừ khi trả lời sai \(10 - x\) (câu) là: \(10 - x\) (điểm).
Như vậy, số điểm của người đó sau khi trả lời hết 10 câu hỏi là: \(10 + 5x - \left( {10 - x} \right)\) (điểm).
Theo bài, để được dự thi vòng tiếp theo thì người đó cần có tổng số điểm từ 40 điểm trở lên nên ta có bất phương trình:
\(10 + 5x - \left( {10 - x} \right) \ge 40.\)
Vậy bất phương trình cần tìm là: \(10 + 5x - \left( {10 - x} \right) \ge 40.\)
b) Giải bất phương trình:
\(10 + 5x - \left( {10 - x} \right) \ge 40\)
\(10 + 5x - 10 + x \ge 40\)
\(6x \ge 40\)
\(x \ge \frac{{40}}{6}\,\,\left( { \approx 6,666...} \right)\).
Vì \(x\) là số nguyên nên \(x \ge 7.\)
Vậy người dự thi cần phải trả lời chính xác ít nhất 7 câu hỏi thì mới được dự thi ở vòng sau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
