Câu hỏi:

26/11/2025 59 Lưu

Người ta dùng 100 m rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của mảnh vườn là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh vườn để có thể rào được.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x,\,\,y\) lần lượt là độ dài hai cạnh của mảnh vườn hình chữ nhật \(\left( {x > 0,\,\,y > 0} \right).\)

Số mét rào cần rào ba cạnh còn lại của mảnh vườn là: \(2x + y\) (mét).

Diện tích mảnh vườn là: \(xy\) (m2).

⦁ Chứng minh bất đẳng thức: \[ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\] với \(a,\,\,b\) là các số không âm.

Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)

Với mọi \(a,\,\,b\) là các số không âm, ta có:

\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).

Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) ta được:

\[xy = 2 \cdot x \cdot \frac{y}{2} \le 2 \cdot {\left( {\frac{{x + \frac{y}{2}}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{2x + y}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{100}}{2}} \right)^2} = 1\,\,250{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Dấu “=” xảy ra khi và chỉ khi \(x = \frac{y}{2}\) và \(2x + y = 100\) hay \(2 \cdot \frac{y}{2} + y = 100\) tức là \(y = 50\), \(x = 25.\)

Vậy diện tích lớn nhất của mảnh vườn là \(1\,\,250{\rm{\;}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).

Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ  \approx 2,92\) (m).

Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).

Xét \(\Delta BDE\) vuông tại \(B,\) ta có:

\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)

Lời giải

a) Số câu trả lời sai là: \(10 - x\) (câu).

Số điểm người đó có được khi trả lời đúng \(x\) (câu) là: \(5x\) (điểm).

Số điểm người đó bị trừ khi trả lời sai \(10 - x\) (câu) là: \(10 - x\) (điểm).

Như vậy, số điểm của người đó sau khi trả lời hết 10 câu hỏi là: \(10 + 5x - \left( {10 - x} \right)\) (điểm).

Theo bài, để được dự thi vòng tiếp theo thì người đó cần có tổng số điểm từ 40 điểm trở lên nên ta có bất phương trình:

\(10 + 5x - \left( {10 - x} \right) \ge 40.\)

Vậy bất phương trình cần tìm là: \(10 + 5x - \left( {10 - x} \right) \ge 40.\)

b) Giải bất phương trình:

\(10 + 5x - \left( {10 - x} \right) \ge 40\)

\(10 + 5x - 10 + x \ge 40\)

\(6x \ge 40\)

\(x \ge \frac{{40}}{6}\,\,\left( { \approx 6,666...} \right)\).

Vì \(x\) là số nguyên nên \(x \ge 7.\)

Vậy người dự thi cần phải trả lời chính xác ít nhất 7 câu hỏi thì mới được dự thi ở vòng sau.

Câu 4

Cho tam giác nhọn \[ABC\] có đường cao \[AK\].

a) Viết các tỉ số lượng giác của góc \(C.\)

b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].

c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP