Người ta dùng 100 m rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của mảnh vườn là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh vườn để có thể rào được.
Quảng cáo
Trả lời:
Gọi \(x,\,\,y\) lần lượt là độ dài hai cạnh của mảnh vườn hình chữ nhật \(\left( {x > 0,\,\,y > 0} \right).\)
Số mét rào cần rào ba cạnh còn lại của mảnh vườn là: \(2x + y\) (mét).
Diện tích mảnh vườn là: \(xy\) (m2).
⦁ Chứng minh bất đẳng thức: \[ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\] với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) ta được:
\[xy = 2 \cdot x \cdot \frac{y}{2} \le 2 \cdot {\left( {\frac{{x + \frac{y}{2}}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{2x + y}}{2}} \right)^2} = \frac{1}{2} \cdot {\left( {\frac{{100}}{2}} \right)^2} = 1\,\,250{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Dấu “=” xảy ra khi và chỉ khi \(x = \frac{y}{2}\) và \(2x + y = 100\) hay \(2 \cdot \frac{y}{2} + y = 100\) tức là \(y = 50\), \(x = 25.\)
Vậy diện tích lớn nhất của mảnh vườn là \(1\,\,250{\rm{\;}}{{\rm{m}}^2}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (đồng) và \(y\) (đồng) lần lượt là giá vé cáp treo khứ hồi và giá vé 1 lượt \(\left( {x > 0,\,\,y > 0} \right).\)
Do giá vé 1 lượt rẻ hơn giá vé khứ hồi là \[70{\rm{ }}000\] đồng nên ta có phương trình:
\(x - y = 70\,\,000.\,\,\,\left( 1 \right)\)
Do trong đoàn \(40\) người chỉ có \(5\) người mua vé cáp treo \(1\) lượt cho lượt xuống nên đã có \(40 - 5 = 35\) người mua vé cáp treo khứ hồi.
Khi đó, số tiền cần trả để mua \(35\) vé cáp treo khứ hồi và \(5\) vé cáp treo 1 lượt là: \(35x + 5y\) (đồng).
Theo bài, cả đoàn khách du lịch này đã chi ra \[8{\rm{ }}450{\rm{ }}000\] đồng để mua vé nên ta có phương trình:
\(35x + 5y = 8{\rm{ }}450{\rm{ }}000.\,\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = 70\,\,000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\35x + 5y = 8{\rm{ }}450{\rm{ }}000\,\,\,\,\left( 2 \right)\end{array} \right.\)
Nhân hai vế của phương trình \(\left( 1 \right)\) với \(5,\) ta được hệ phương trình mới là: \(\left\{ \begin{array}{l}5x - 5y = 350\,\,000\\35x + 5y = 8{\rm{ }}450{\rm{ }}000.\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được:
\(40x = 8\,\,800\,\,000,\) suy ra \(x = 220\,\,000\) (thỏa mãn).
Thay \(x = 220\,\,000\) vào phương trình \(\left( 1 \right),\) ta được:
\(220\,\,000 - y = 70\,\,000,\) suy ra \(y = 150\,\,000\) (thỏa mãn).
Do đó hệ phương trình trên có nghiệm là \(\left( {x;\,\,y} \right) = \left( {220\,\,000;\,\,150\,\,000} \right).\)
Vậy giá vé cáp treo khứ hồi và giá vé cáp treo 1 lượt lần lượt là \(200\,\,000\) đồng và \(150\,\,000\) đồng.
Lời giải
Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).
Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).
Xét \(\Delta BDE\) vuông tại \(B,\) ta có:
\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)
Câu 3
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
