(0,5 điểm) Bạn An là sinh viên của một trường đại học, muốn vay tiền ngân hàng với lãi suất ưu đãi để trang trải kinh phí học tập. Đầu năm thứ nhất, bạn ấy vay ngân hàng số tiền 40 triệu đồng với lãi suất là \(4\% \) một năm. Tính số tiền mà bạn An nợ ngân hàng sau 4 năm, biết rằng trong 4 năm đó bạn An chưa trả bất kì khoản nào và lãi suất ngân hàng không thay đổi.
Quảng cáo
Trả lời:
Gọi \({u_n}\)là số tiền bạn An nợ ngân hàng sau \(n\) năm
Ta có: \({u_1} = {u_{n - 1}} + {u_{n - 1}}.0,04 = {u_{n - 1}}.1,04\)
Ta có dãy số: \(\left( {{u_n}} \right)\)lập thành một cấp số nhân với số hạng đầu \({u_1} = 40 + 40.0,04 = 41,6\) (triệu đồng) và công bội \(q = 1,04\)
Vậy số tiền bạn An nợ ngân hàng sau 4 năm là:
\({u_4} = {u_1}.{q^3} = 41,6.1,{04^3} = 46,8\) (triệu đồng).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Tìm giao tuyến của các cặp mặt phẳng sau: \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\) ; \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
+) Gọi \(O\) là giao điểm của \(AC\)và \(BD\)
Ta có:
\(\left\{ \begin{array}{l}O \in AC\\AC \subset \left( {SAC} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right)\)
\(\left\{ \begin{array}{l}O \in BD\\BD \subset \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SBD} \right)\)
Mà: \(S \in \left( {SAC} \right)\) và \(S \in \left( {SBD} \right)\)
Vậy: \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\)
+) Trong mặt phẳng \(\left( {ABCD} \right)\), kéo dài \(AB\)và \(CD\) cắt nhau tại \(I\)
Ta có:
\(\left\{ \begin{array}{l}I \in AB\\AB \subset \left( {SAB} \right)\end{array} \right. \Rightarrow I \in \left( {SAB} \right)\)
\(\left\{ \begin{array}{l}I \in CD\\CD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow I \in \left( {SCD} \right)\)
Mà: \(S \in \left( {SAB} \right)\) và \(S \in \left( {SCD} \right)\)
Vậy: \(\left( {SAB} \right) \cap \left( {SCD} \right) = SI\)
b) Tìm giao điểm của đường thẳng \(MG\) và mặt phẳng \(\left( {ABCD} \right)\).
Gọi \(N\)là trung điểm của \(CD\)
Trong \(\Delta SAN\)có: \(\frac{{SM}}{{SA}} = \frac{1}{2}\;\;;\;\;\frac{{SG}}{{SN}} = \frac{2}{3}\; \Rightarrow \frac{{SM}}{{SA}} \ne \frac{{SG}}{{SN}}\)
\( \Rightarrow \)\(MG\) không song song với \(AI\)
Trong \(\left( {SAI} \right)\), kéo dài \(MG\) và \(AI\) cắt nhau tại \(K\)
Ta có: \(\left\{ \begin{array}{l}K \in AI\\AI \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow K \in \left( {ABCD} \right)\)
Vậy: \(K\) là giao điểm của \(MG\) và \(\left( {ABCD} \right)\)
Câu 2
Lời giải
Chọn C
Ta có \[{u_n} = {u_1}.{q^{n - 1}}\]
Suy ra \( - 3072 = - {3.2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 1024 = {2^{10}} \Leftrightarrow n - 1 = 10 \Leftrightarrow n = 11.\)
Vây: Số \( - 3072\) là số hạng thứ 11 của cấp số nhân đã cho.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.