Câu hỏi:

28/11/2025 8 Lưu

Cho hình chóp \[S.ABCD\] có đáy \(ABCD\) là hình bình hành. Gọi \(d\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\)\(\left( {SBC} \right)\). Khẳng định nào sau đây đúng?      

A. \(d\) qua \(S\) và song song với \(BC\).         
B. \(d\) qua \(S\) và song song với \(BD\).       
C. \(d\) qua \(S\) và song song với \(DC\).     
D. \(d\) qua \(S\) và song song với \(AB\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (ảnh 1)

Ta có \(S \in \left( {SBC} \right) \cap \left( {SAD} \right)\)

\(BC{\rm{ // }}AD\) nên \(d = \left( {SBC} \right) \cap \left( {SAD} \right)\) đường thẳng đi qua \(S\)\(d{\rm{ // }}BC{\rm{ // }}AD\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(K\) là giao điểm của \(MN\) \(CD\).   
B. \(K\) là giao điểm của \(MN\)\(AC\).
C. \(K\) là giao điểm của \(CM\)\(DN\).
D. \(K\) là giao điểm của \(MN\) \(AD\).

Lời giải

Chọn A

Cho tứ diện ABCD có M,N lần lượt là các điểm thuộc cạnh BC và BD sao cho MN không song song (ảnh 1)

Trong \(\left( {BCD} \right)\), gọi \(K = MN \cap CD\) suy ra \(K = MN \cap \left( {ACD} \right)\).

Câu 2

A. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).               
B. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k\pi \\x = \pi - \alpha + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).                      
C. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k\pi \\x = - \alpha + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
D. \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Chọn D

Công thức nghiệm của phương trình lượng giác cơ bản sin là

\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(1;\, - 2;\, - 4;\, - 6;\, - 8\).    

B. \(1;\, - 3;\, - 7;\, - 11;\, - 15\).

C. \(1;\, - 3;\, - 6;\, - 9;\, - 12\). 
D. \[1;\, - 3;\, - 5;\, - 7;\, - 9\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(q = 21\).   
B. \(q = 2\sqrt 2 \).  
C. \(q = 4\).     
D. \(q = \pm 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP