Câu hỏi:

28/11/2025 44 Lưu

Cho hình chóp \(S.ABCD\). Gọi \[I\] là trung điểm của \[SD\], \[J\] là điểm trên \[SC\] và không trùng trung điểm \[SC\]. Giao tuyến của hai mặt phẳng \(\left( {ABCD} \right)\)\(\left( {AIJ} \right)\)

A. \[AF\], \[F\] là giao điểm \[IJ\]\[CD\].         
B. \[AH\], \[H\] là giao điểm \[IJ\]\[AB\].    
C. \[AG\], \[G\] là giao điểm \[IJ\]\[AD\].                
D. \[AK\], \[K\] là giao điểm \[IJ\]\[BC\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp S.ABCD. Gọi I  là trung điểm của SD (ảnh 1)

 

Trong mặt phẳng \(\left( {SCD} \right)\), gọi \(F = IJ \cap DC\)

Ta có \(F \in \left( {AIJ} \right) \cap \left( {ABCD} \right)\) \(A \in \left( {AIJ} \right) \cap \left( {ABCD} \right)\) nên \(AF = \left( {AIJ} \right) \cap \left( {ABCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({S_{10}} = \frac{{ - \frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{2}\).                           
B. \({S_{10}} = \frac{{\frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{{ - 2}}\).                         
C. \({S_{10}} = \frac{{\frac{2}{3}.\left[ {1 + {3^{10}}} \right]}}{4}\).                   
D. \({S_{10}} = \frac{{\frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{4}\).

Lời giải

Chọn D

Ta \({u_5} = {u_1}.{q^4} = 54\)\({u_2} = {u_1}.q = - 2\)

Suy ra \(\frac{{{u_5}}}{{{u_2}}} = \frac{{{u_1}.{q^4}}}{{{u_1}.q}} \Rightarrow {q^3} = \frac{{54}}{{ - 2}} = - 27 \Rightarrow q = - 3\)

Thay vào \({u_2} = {u_1}.q = - 2\), suy ra \({u_1} = - 2:\left( { - 3} \right) = \frac{2}{3}\)

\[{S_{10}} = {u_1}.\frac{{1 - {q^{10}}}}{{1 - q}} = \frac{2}{3}.\frac{{1 - {{\left( { - 3} \right)}^{10}}}}{{1 - \left( { - 3} \right)}} = \frac{{\frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{4}\]

Câu 2

A. \(\left( {SAC} \right)\).      
B. \(\left( {SAB} \right)\).     
C. \(\left( {SAD} \right)\).         
D. \(\left( {SBC} \right)\).

Lời giải

Chọn A

Cho hình chóp tứ giác S.ABCD. Gọi O là giao điểm của AC và BD (ảnh 1)

Ta \(O \in AC \subset \left( {SAC} \right)\) nên \(O\) nằm trên mặt phẳng \(\left( {SAC} \right)\).

Câu 3

A. \(1,2,3,4,...\).          
B. \(2,4,8,16,...\).
C. \(2,4,6,8,...\).       
D. \(1,3,5,7,...\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.  \(\left( P \right){\rm{ // }}\left( Q \right) \Rightarrow a{\rm{ // }}b\).   

B. \(\left( P \right){\rm{ // }}\left( Q \right) \Rightarrow a{\rm{ // }}\left( Q \right)\) \(b{\rm{ // }}\left( P \right)\).

C. \(a{\rm{ //}}b \Rightarrow \left( P \right){\rm{ // }}\left( Q \right)\) .    
D. \(a\)\(b\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số liên tục trên \[\left( {1;\,\, + \infty } \right)\].
B. Hàm số liên tục trên \[\left( { - \infty ;\,\,4} \right)\].
C. Hàm số liên tục trên \[\mathbb{R}\].    
D. Hàm số liên tục trên \[\left( {1;\,\,4} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {BC'D} \right)\]. 
B.  \[\left( {BCA'} \right)\]. 
C. \[\left( {BDA'} \right)\].       
D. \[\left( {A'C'C} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Nếu \(b\;{\rm{// }}a\) thì \(b{\rm{ // }}\left( \alpha \right)\).          
B. Nếu \(b{\rm{ // }}\left( \alpha \right)\) thì \(b\;{\rm{// }}a\).
C. Nếu \[b\] cắt \[\left( \alpha \right)\] thì \[b\] cắt \[a\].                                  
D. Nếu \(b{\rm{ // }}\left( \alpha \right)\) và mặt phẳng \(\left( \beta \right)\) chứa \[b\] thì \(\left( \beta \right)\) sẽ cắt \[\left( \alpha \right)\] theo giao tuyến là đường thẳng song song với \[b\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP