Tính tổng \(S\) gồm tất cả các giá trị \[m\] để hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x\,\,\,\,\,{\rm{khi }}x < 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ khi }}x = 1\\{m^2}x + 1\,\,\,{\rm{khi }}x > 1\end{array} \right.\] liên tục tại \(x = 1\).
Tính tổng \(S\) gồm tất cả các giá trị \[m\] để hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x\,\,\,\,\,{\rm{khi }}x < 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ khi }}x = 1\\{m^2}x + 1\,\,\,{\rm{khi }}x > 1\end{array} \right.\] liên tục tại \(x = 1\).
Quảng cáo
Trả lời:
Chọn C
Ta có \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\); \(f\left( 1 \right) = 2\); \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{m^2}x + 1} \right) = {m^2} + 1\)
Để hàm số liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right) = 2\)
Suy ra \({m^2} + 1 = 2 \Leftrightarrow {m^2} = 1 \Leftrightarrow m = \pm 1\)
Vậy \(S = 1 + \left( { - 1} \right) = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A

Trong \(\left( {BCD} \right)\), gọi \(K = MN \cap CD\) suy ra \(K = MN \cap \left( {ACD} \right)\).
Câu 2
Lời giải
Chọn D
Công thức nghiệm của phương trình lượng giác cơ bản sin là
\(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Câu 3
B. \(1;\, - 3;\, - 7;\, - 11;\, - 15\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.