Câu hỏi:

28/11/2025 29 Lưu

Tính tổng \(S\) gồm tất cả các giá trị \[m\] để hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x\,\,\,\,\,{\rm{khi }}x < 1\\2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ khi }}x = 1\\{m^2}x + 1\,\,\,{\rm{khi }}x > 1\end{array} \right.\] liên tục tại \(x = 1\).

A. \(S = - 1\).  
B. \(S = 1\).     
C. \(S = 0\)
D. \(S = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + x} \right) = {1^2} + 1 = 2\); \(f\left( 1 \right) = 2\); \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{m^2}x + 1} \right) = {m^2} + 1\)

Để hàm số liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right) = 2\)

Suy ra \({m^2} + 1 = 2 \Leftrightarrow {m^2} = 1 \Leftrightarrow m = \pm 1\)

Vậy \(S = 1 + \left( { - 1} \right) = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({S_{10}} = \frac{{ - \frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{2}\).                           
B. \({S_{10}} = \frac{{\frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{{ - 2}}\).                         
C. \({S_{10}} = \frac{{\frac{2}{3}.\left[ {1 + {3^{10}}} \right]}}{4}\).                   
D. \({S_{10}} = \frac{{\frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{4}\).

Lời giải

Chọn D

Ta \({u_5} = {u_1}.{q^4} = 54\)\({u_2} = {u_1}.q = - 2\)

Suy ra \(\frac{{{u_5}}}{{{u_2}}} = \frac{{{u_1}.{q^4}}}{{{u_1}.q}} \Rightarrow {q^3} = \frac{{54}}{{ - 2}} = - 27 \Rightarrow q = - 3\)

Thay vào \({u_2} = {u_1}.q = - 2\), suy ra \({u_1} = - 2:\left( { - 3} \right) = \frac{2}{3}\)

\[{S_{10}} = {u_1}.\frac{{1 - {q^{10}}}}{{1 - q}} = \frac{2}{3}.\frac{{1 - {{\left( { - 3} \right)}^{10}}}}{{1 - \left( { - 3} \right)}} = \frac{{\frac{2}{3}.\left[ {1 - {3^{10}}} \right]}}{4}\]

Câu 2

A. \(\left( {SAC} \right)\).      
B. \(\left( {SAB} \right)\).     
C. \(\left( {SAD} \right)\).         
D. \(\left( {SBC} \right)\).

Lời giải

Chọn A

Cho hình chóp tứ giác S.ABCD. Gọi O là giao điểm của AC và BD (ảnh 1)

Ta \(O \in AC \subset \left( {SAC} \right)\) nên \(O\) nằm trên mặt phẳng \(\left( {SAC} \right)\).

Câu 3

A. \(1,2,3,4,...\).          
B. \(2,4,8,16,...\).
C. \(2,4,6,8,...\).       
D. \(1,3,5,7,...\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.  \(\left( P \right){\rm{ // }}\left( Q \right) \Rightarrow a{\rm{ // }}b\).   

B. \(\left( P \right){\rm{ // }}\left( Q \right) \Rightarrow a{\rm{ // }}\left( Q \right)\) \(b{\rm{ // }}\left( P \right)\).

C. \(a{\rm{ //}}b \Rightarrow \left( P \right){\rm{ // }}\left( Q \right)\) .    
D. \(a\)\(b\) chéo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hàm số liên tục trên \[\left( {1;\,\, + \infty } \right)\].
B. Hàm số liên tục trên \[\left( { - \infty ;\,\,4} \right)\].
C. Hàm số liên tục trên \[\mathbb{R}\].    
D. Hàm số liên tục trên \[\left( {1;\,\,4} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {BC'D} \right)\]. 
B.  \[\left( {BCA'} \right)\]. 
C. \[\left( {BDA'} \right)\].       
D. \[\left( {A'C'C} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Nếu \(b\;{\rm{// }}a\) thì \(b{\rm{ // }}\left( \alpha \right)\).          
B. Nếu \(b{\rm{ // }}\left( \alpha \right)\) thì \(b\;{\rm{// }}a\).
C. Nếu \[b\] cắt \[\left( \alpha \right)\] thì \[b\] cắt \[a\].                                  
D. Nếu \(b{\rm{ // }}\left( \alpha \right)\) và mặt phẳng \(\left( \beta \right)\) chứa \[b\] thì \(\left( \beta \right)\) sẽ cắt \[\left( \alpha \right)\] theo giao tuyến là đường thẳng song song với \[b\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP