Câu hỏi:

01/12/2025 6 Lưu

Thời gian (phút) truy cập Internet mỗi buồi tối của một số học sinh được cho trong bảng sau:

Thời gian (phút) truy cập Internet mỗi buồi tối của một số học sinh được cho trong bảng sau (ảnh 1)

Tính trung vị của mẫu số liệu ghép nhóm này.

A. \(18,3\).   
B. \(18\).   
C. \(18,1\) 
D. \(18,2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Cỡ mẫu là \(3 + 12 + 15 + 24 + 2 = 56\) nên trung vị là \(\frac{{{x_{28}} + {x_{29}}}}{2}\).

Do 2 giá trị \({x_{28}},{x_{29}}\) thuộc nhóm \(\left[ {15,5;18,5} \right)\) nên nhóm này chứa trung vị.

Ta có \(p = 3;{a_3} = 15,5;{m_3} = 15;{m_1} + {m_2} = 3 + 12 = 15;{a_4} - {a_3} = 3\).

Do đó \({M_e} = 15,5 + \frac{{\frac{{56}}{2} - 15}}{{15}}.3 = 18,1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[f\left( 3 \right) = 2m - 1\]; .

Để hàm số liên tục tại  thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right)\).

Suy ra \(2m - 1 = - 4 \Leftrightarrow m = - \frac{3}{2}\). Vậy \(m = - \frac{3}{2}\).

Lời giải

Chọn B

Số trung bình là \(\overline x = \frac{{6 \times 2 + 8 \times 7 + 10 \times 7 + 12 \times 3 + 14 \times 1}}{{20}} = \frac{{47}}{5} = 9,4\).

Câu 3

A. \(\mathbb{R}\backslash \left\{ {\frac{1}{2}} \right\}\).           
B. \(\mathbb{R}\).
C. \(\mathbb{R}\backslash \left\{ {\left. {\frac{\pi }{3} + k2\pi } \right|k \in \mathbb{Z}} \right\}\).       
D. \(\mathbb{R}\backslash \left\{ {\left. { \pm \frac{\pi }{3} + k2\pi } \right|k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\cos \alpha < 0\).       
B. \(\cot \alpha < 0\).  
C. \(\sin \alpha > 0\).  
D. \(\sin \alpha < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[PQ{\rm{// }}(SAB)\;\]   
B. \[PQ{\rm{// }}(SBC)\;\]      

C.PQ // (ABCD) 

D. \[PQ{\rm{// }}(SCD)\;\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Ba điểm phân biệt.         
B. Hai đường thẳng cắt nhau.
C. Một điểm và một đường thẳng.      
D. Bốn điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\mathop {\lim }\limits_{x \to {x_{_0}}} \frac{{{\rm{f}}\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\]( với \[M \ne 0\]).       
B. \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right) + g\left( x \right)} \right] = L + M\].
C. \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right).g\left( x \right)} \right] = L.M\].                            
D. \[\mathop {\lim }\limits_{x \to {x_{_0}}} {\rm{ }}\left[ {{\rm{f}}\left( x \right) - g\left( x \right)} \right] = M - L\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP