Câu hỏi:

01/12/2025 53 Lưu

Cho hình chóp \(S.ABCD\) có đáy \[ABCD\] là hình bình hành. Xét vị trí tương đối của đường thẳng \[SA\]\[BC\]?

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Xét vị trí tương đối của đường thẳng SA và BC (ảnh 1)

A. Song song     
B. Cắt nhau       
C. Chéo nhau          
D. Trùng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[SA\]\[BC\] là hai đường thẳng chéo nhau vì \[SA\]\[BC\] không cùng thuộc một mặt phẳng và không có điểm chung.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD, AD = 2BC (ảnh 1)

Ta có \(AD\,{\rm{//}}\,BC,AD = 2BC,AC \cap BD = O \Rightarrow \frac{{BC}}{{AD}} = \frac{{OC}}{{OA}} = \frac{{OB}}{{OD}} = \frac{1}{2}\).

\(MD = 2MS \Rightarrow \frac{{MS}}{{MD}} = \frac{1}{2}\).

Suy ra \(\frac{{OB}}{{OD}} = \frac{{MS}}{{MD}} = \frac{1}{2} \Rightarrow OM\,{\rm{//}}\,SB\), mà \(SB \subset \left( {SAB} \right)\) nên \(OM\,{\rm{//}}\,\left( {SAB} \right)\).

Lời giải

Cho hình chóp S.ABCD, đáy ABCD à hình vuông có cạnh bằng 6 (ảnh 1)

a. Ta có \[\frac{{SM}}{{SA}} = \frac{2}{3}\], \[\frac{{SN}}{{SB}} = \frac{2}{3}.\]\[ \Rightarrow \]\[MN\]//\[AB\]\[ \Rightarrow MN//\left( {ABCD} \right).\]

b. Ta có \[\left( \alpha \right)\parallel AB\]\[BC\] suy ra \[\left( \alpha \right)\parallel \left( {ABCD} \right).\]

Giả sử \[\left( \alpha \right)\] cắt các mặt bên \[\left( {SAB} \right),\,\,\left( {SBC} \right),\,\,\left( {SCD} \right),\,\,\left( {SDA} \right)\] lần lượt tại các điểm M, \[N,\,\,P,\,\,Q\] với \[N \in SB,\,\,P \in SC,\,\,Q \in SD\,\]suy ra \[\left( \alpha \right) \equiv \left( {MNPQ} \right)\,.\]

Khi đó \[MN\]//\[AB\]\[ \Rightarrow \,\,\,\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}} = \frac{2}{3}\,.\]

Tương tự, ta có được \[\frac{{NP}}{{BC}} = \frac{{PQ}}{{CD}} = \frac{{QM}}{{DA}} = \frac{2}{3}\]\[MNPQ\] là hình vuông.

Suy ra \[{S_{MNPQ}} = {\left( {\frac{2}{3}} \right)^2}{S_{ABCD}} = \frac{4}{9}{S_{ABCD}} = \frac{4}{9}.6.6 = 16.\]

Câu 3

A. \({M_o} = \frac{{718}}{{39}}\).                               
B. \({M_o} = \frac{{758}}{{39}}\).                
C. \({M_o} = \frac{{578}}{{39}}\).               
D. \({M_o} = \frac{{740}}{{39}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - \infty \).   
B. \(1\).   
C. \( - \frac{2}{3}\). 
D. \( + \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Điểm \[K\] (với \[O\] là trung điểm của \[BD\]\[K = SO \cap AI\]).
B. Điểm \[I\].
C. Điểm \[N\] (với \[O\] là giao điểm của \[AC\]\[BD\], \[N\] là trung điểm của \[SO\]).
D. Điểm \[M\] (với \[O\] là giao điểm của \[AC\]\[BD\], \[M\] là giao điểm \[SO\]\[AI\]).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP