Câu hỏi:

01/12/2025 6 Lưu

Nghiệm của phương trình \[\tan x = 1\]

A. \[x = \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z}\].         
B. \[x = k\pi ,\,\,k \in \mathbb{Z}\].                              
C. \[x = \frac{{3\pi }}{4} + k\pi ,\,\,k \in \mathbb{Z}\].                              
D. \[x = \frac{\pi }{4} + k\pi ,\,\,k \in \mathbb{Z}\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có \[\tan x = 1 \Leftrightarrow x = \frac{\pi }{4} + k\pi ,\,\,k \in \mathbb{Z}\].

Vậy nghiệm của phương trình là \[x = \frac{\pi }{4} + k\pi ,\,\,k \in \mathbb{Z}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Số trung bình là \(\overline x = \frac{{6 \times 2 + 8 \times 7 + 10 \times 7 + 12 \times 3 + 14 \times 1}}{{20}} = \frac{{47}}{5} = 9,4\).

Lời giải

Ta có \[f\left( 3 \right) = 2m - 1\]; .

Để hàm số liên tục tại  thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right)\).

Suy ra \(2m - 1 = - 4 \Leftrightarrow m = - \frac{3}{2}\). Vậy \(m = - \frac{3}{2}\).

Câu 3

A. \[PQ{\rm{// }}(SAB)\;\]   
B. \[PQ{\rm{// }}(SBC)\;\]      

C.PQ // (ABCD) 

D. \[PQ{\rm{// }}(SCD)\;\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Ba điểm phân biệt.         
B. Hai đường thẳng cắt nhau.
C. Một điểm và một đường thẳng.      
D. Bốn điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[J\] là trung điểm \[AM\].      
B. \[DJ = \left( {ACD} \right) \cap \left( {BDJ} \right)\].
C. \[A\], \[J\], \[M\] thẳng hàng.  
D. \[AM = \left( {ACD} \right) \cap \left( {ABG} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\mathbb{R}\backslash \left\{ {\frac{1}{2}} \right\}\).           
B. \(\mathbb{R}\).
C. \(\mathbb{R}\backslash \left\{ {\left. {\frac{\pi }{3} + k2\pi } \right|k \in \mathbb{Z}} \right\}\).       
D. \(\mathbb{R}\backslash \left\{ {\left. { \pm \frac{\pi }{3} + k2\pi } \right|k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\cos \alpha < 0\).       
B. \(\cot \alpha < 0\).  
C. \(\sin \alpha > 0\).  
D. \(\sin \alpha < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP