Câu hỏi:

01/12/2025 3 Lưu

Cho tam giác \[ABC\] vuông tại \[A\] \(\left( {AB < AC} \right)\). Vẽ \[AH \bot BC\] \(\left( {H \in BC} \right).\) Lấy điểm \[D\] thuộc tia đối của tia \[HA\] sao cho \[HD = HA\].

a) Chứng minh \[\Delta BAH{\rm{ = }}\Delta BDH\] và tia \[BC\] là tia phân giác của \(\widehat {ABD}\).

b) Qua \[D\] vẽ đường thẳng song song với \[AB\], cắt \(BC\) tại \(M\). Chứng minh rằng \[AD\] là đường trung trực của đoạn thẳng \[BM\].

c) Vẽ đường thẳng \[CN\] vuông góc với đường thẳng \[AM\] \[\left( {N \in AM} \right)\]. Chứng minh ba điểm \[C,{\rm{ }}N,{\rm{ }}D\] thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Xét \(\Delta ABH\)\(\Delta DBH\) có:

\[\widehat {AHB} = \widehat {DHB} = 90^\circ \];

\(BH\) là cạnh chung;

\(AH = DH\) (giả thiết).

Do đó \[\Delta BAH{\rm{ = }}\Delta BDH\] (hai cạnh góc vuông)

Suy ra \(\widehat {ABH} = \widehat {DBH}\) (hai góc tương ứng)

Từ đó ta có \(BC\) là tia phân giác của \(\widehat {ABD}\).

Cho tam giác \[ABC\] vuông (ảnh 1)

b) Do \[\Delta BAH{\rm{ = }}\Delta BDH\] (chứng minh câu a)

Nên \(\widehat {BAH} = \widehat {BDH}\) (hai góc tương ứng)

Lại có \(DM\,{\rm{//}}\,BA\) (giả thiết) nên \(\widehat {BAH} = \widehat {MDH}\) (hai góc so le trong)

Do đó \(\widehat {BDH} = \widehat {MDH}\)

Xét \(\Delta BDH\)\[\Delta MDH\] có:

\(\widehat {BHD} = \widehat {MHD} = 90^\circ \);

\(DH\) là cạnh chung;

\(\widehat {BDH} = \widehat {MDH}\) (chứng minh trên).

Do đó \(\Delta BDH = \Delta MDH\) (cạnh góc vuông – góc nhọn kề)

Suy ra \(BH = MH\) (hai cạnh tương ứng)

Hay \(H\) là trung điểm của \(BM\).

Ta có \(AD \bot BM\) tại trung điểm \(H\) của đoạn thẳng \(BM\) nên \[AD\] là đường trung trực của đoạn thẳng \[BM\].

c) Xét \(\Delta ABC\)\(\Delta DBC\) có:

\(AB = DB\) (do \[\Delta BAH{\rm{ = }}\Delta BDH\]);

\(\widehat {ABC} = \widehat {DBC}\) (chứng minh câu a);

\(BC\) là cạnh chung

Do đó \(\Delta ABC = \Delta DBC\) (c.g.c)

Suy ra \(\widehat {BAC} = \widehat {BDC} = 90^\circ \) (hai góc tương ứng) hay \(CD \bot BD\;\;\;\;\;\;\;\;\;\left( 1 \right)\)                    

Xét \(\Delta AHM\)\(\Delta DHB\) có:

\(\widehat {AHM} = \widehat {DHB} = 90^\circ \);

\(AH = DH\) (giả thiết);

\(BH = MH\) (chứng minh câu b)

Do đó \(\Delta AHM = \Delta DHB\) (hai cạnh góc vuông)

Suy ra \(\widehat {HAM} = \widehat {HDB}\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên \(AN\,{\rm{//}}\,BD\;\;\;\;\;\;\;\;\;\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra \(CD \bot AN\).

Mặt khác \(CN \bot AN\) (giả thiết)

Từ đó suy ra hai đường thẳng \(CD\)\(CN\) trùng nhau hay ba điểm \(C,\,\,N,\,\,D\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì \[\Delta ACD\] có \(\widehat A\) tù nên \(\widehat A\) là góc lớn nhất trong ba góc nên \[CD\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[CD > CA\]          (1)

Ta có: \(\widehat {BDC} > \widehat A\) (do \(\widehat {BDC}\) là góc ngoài của \[\Delta ACD\])

Do đó \(\widehat {BDC}\) tù.

 Cho tam giác \(ABC\) có góc \[A\] tù. Trên cạnh \[AB\] lấy điểm \[D\]. a) So sánh các đoạn thẳng \(CA,\,\,CD\) và \[CB\]. b) Trên cạnh \[AC\] lấy điểm \[E\]. So sánh \[DE\] và \[BC\]. (ảnh 1)

Vì \[\Delta BDC\] có \(\widehat {BDC}\) tù nên \(\widehat {BDC}\) là góc lớn nhất trong ba góc.

Nên đó \[BC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[CB > CD\]          (2)

Từ (1) và (2) suy ra \[CB > CD > CA\].

b) Ta có: \(\widehat {DEC} > \widehat A\) (do \(\widehat {DEC}\) là góc ngoài của tam giác \[AED\]).

Suy ra \(\widehat {DEC}\) tù.

Vì \[\Delta DEC\] có \(\widehat {DEC}\) tù nên \(\widehat {DEC}\) là góc lớn nhất trong ba góc.

Nên \[DC\] là cạnh lớn nhất trong ba cạnh (trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất).

Do đó \[DC > DE\].

Mà \[CB > CD\] (theo câu a) nên \[CB > DE\].

Do đó \[DE < BC\].

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABM\) và \(\Delta DCM\) có

\(MA = MD\) (giả thiết)

\(MB = MC\) (vì \[M\] là trung điểm)

\(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh)

Do đó \(\Delta ABM = \Delta DCM\) (c.g.c)

b) Từ câu a: \(\Delta ABM = \Delta DCM\).

Suy ra \(\widehat {BAM} = \widehat {MDC}\).

Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau).

Cho tam giác \(ABC\), gọi \(M\) là (ảnh 1)

c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).

Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)

Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).

Vậy \(AM < \frac{{AB + AC}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP