Cho \(\Delta ABC\) vuông tại \(A\) \(\left( {AB > AC} \right)\) tại \(C\). Tia phân giác góc \(ACB\) cắt cạnh \(AB\) tại \(D\). Trên cạnh \(BC\) lấy điểm \(E\) sao cho \(CE = CA\).
a) Chứng minh \(DE \bot BC\).
b) Vẽ đường thẳng \(d\) vuông góc với \(AC\) tại \(C\). Qua \(A\) vẽ đường thẳng song song với \(CD\) cắt \(d\) tại \(M\). Chứng minh \(AM = CD\).
c) Qua \(B\) vẽ đường thẳng vuông góc với \(CD\) tại \(N\) cắt \(AC\) tại \(K\). Chứng minh \(KE \bot BC\) và ba điểm \(K,\,\,\,D,\,\,\,E\) thẳng hàng.
Cho \(\Delta ABC\) vuông tại \(A\) \(\left( {AB > AC} \right)\) tại \(C\). Tia phân giác góc \(ACB\) cắt cạnh \(AB\) tại \(D\). Trên cạnh \(BC\) lấy điểm \(E\) sao cho \(CE = CA\).
a) Chứng minh \(DE \bot BC\).
b) Vẽ đường thẳng \(d\) vuông góc với \(AC\) tại \(C\). Qua \(A\) vẽ đường thẳng song song với \(CD\) cắt \(d\) tại \(M\). Chứng minh \(AM = CD\).
c) Qua \(B\) vẽ đường thẳng vuông góc với \(CD\) tại \(N\) cắt \(AC\) tại \(K\). Chứng minh \(KE \bot BC\) và ba điểm \(K,\,\,\,D,\,\,\,E\) thẳng hàng.
Quảng cáo
Trả lời:

a) Vì \(CD\) là phân giác \(\widehat {BCA}\) suy ra \(\widehat {BCD} = \widehat {ACD}\).
Xét \(\Delta ACD\) và \(\Delta ECD\) có:
\(AC = AF\,;\,\,\widehat {BCD} = \widehat {ACD}\,;\,\,CD\) chung.
Do đó \(\Delta ACD = \Delta ECD\) (c.g.c).
Suy ra \(\widehat {CED} = \widehat {CAD} = 90^\circ \) (hai góc tương ứng)
Suy ra \(DE \bot BC\).
b) Vì \(AM\parallel CD\) suy ra \(\widehat {MAC} = \widehat {DCA}\) (hai góc so le trong)
Vì \(CM \bot CA\) nên \(\widehat {MCA} = 90^\circ \).
Xét \(\Delta CAD\) và \(\Delta ACM\) có:
\(\widehat {DAC} = \widehat {MCA} = 90^\circ \,;\,\,CA\) chung; \(\widehat {DCA} = \widehat {MAC}\).
Do đó \(\Delta CAD = \Delta ACM\) (g.c.g).
Suy ra (hai cạnh tương ứng).
c) Xét tam giác \(NBC\) và tam giác \(NKC\) có:
\(\widehat {BNC} = \widehat {KNC} = 90^\circ \,;\,\,NC\) chung; \(\widehat {BCN} = \widehat {CKN}\)
Suy ra \(\Delta NBC = \Delta NKC\,\)(g.c.g)
Do đó \(\widehat {NBC} = \widehat {NKC}\,;\,\,NB = NK\).
Xét tam giác \(NBD\) và tam giác \(NKD\) có:
\(NB = ND\,;\,\,\widehat {BND} = \widehat {KND}\,;\,\,ND\) chung.
Suy ra \(\Delta NBD = \Delta NKD\) (c.g.c).
Do đó, \(\widehat {NBD} = \widehat {NKD}\) (hai góc tương ứng)
d) Xét tam giác \(BKE\) và tam giác \(BKC\) có:
\[\widehat {BKE} = \widehat {BKA}\,;\,\,BK\] chung; \[\widehat {BKE} = \widehat {KBA}\].
Do đó \(\Delta BKE = \Delta BKC\) (g.c.g)
Suy ra \(\widehat {BEK} = \widehat {KAB} = 90^\circ \) (hai góc tương ứng)
Suy ra \(KE \bot BC\).
Mà \(DE \bot AC\).
Suy ra ba điểm \(K,\,D,\,E\) thẳng hàng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có \(MA = MD\) (giả thiết) \(MB = MC\) (vì \[M\] là trung điểm) \(\widehat {ABM} = \widehat {CMD}\) (đối đỉnh) Do đó \(\Delta ABM = \Delta DCM\) (c.g.c) b) Từ câu a: \(\Delta ABM = \Delta DCM\). Suy ra \(\widehat {BAM} = \widehat {MDC}\). Nên \(AB\,{\rm{//}}\,CD\) (hai góc ở vị trí so le trong bằng nhau). |
|
c) Xét bất đẳng thức trong tam giác \[ACD\] có \(AD < AC + CD\).
Từ \(\Delta ABM = \Delta DCM\) suy ra \(AB = CD\) (hai cạnh tương ứng)
Do đó \(AD < AC + AB\) nên \(\frac{{AD}}{2} < \frac{{AB + AC}}{2}\).
Vậy \(AM < \frac{{AB + AC}}{2}\).
Câu 2
Cho \(\Delta ABC\) có \(AB < AC\,\). Kẻ \(AH\) vuông góc với \(BC(\,H \in BC)\). Trên tia \(AH\) lấy điểm \(K\) sao cho \(H\) là trung điểm của \(AK\).
a) chứng minh: \(\Delta AHC = \Delta KCH\).
b) Gọi \(E\) là trung điểm của \(BC\). Trên tia \(AE\) lấy điểm \(D\) sao cho \(E\) là trung điểm của \(AD\). Chứng minh rằng: \(BD = AC = CK\).
c) chứng minh rằng: \(EH\) là tia phân giác của góc \(\widehat {AEK}\) và \(DK\,{\rm{//}}\,BC\).
d) Gọi \(I\) là giao điểm của \(BD\) và \(CK\), \(N\) là trung điểm của \(KD\). Chứng minh: \(E,I,N\) thẳng hàng.
Cho \(\Delta ABC\) có \(AB < AC\,\). Kẻ \(AH\) vuông góc với \(BC(\,H \in BC)\). Trên tia \(AH\) lấy điểm \(K\) sao cho \(H\) là trung điểm của \(AK\).
a) chứng minh: \(\Delta AHC = \Delta KCH\).
b) Gọi \(E\) là trung điểm của \(BC\). Trên tia \(AE\) lấy điểm \(D\) sao cho \(E\) là trung điểm của \(AD\). Chứng minh rằng: \(BD = AC = CK\).
c) chứng minh rằng: \(EH\) là tia phân giác của góc \(\widehat {AEK}\) và \(DK\,{\rm{//}}\,BC\).
d) Gọi \(I\) là giao điểm của \(BD\) và \(CK\), \(N\) là trung điểm của \(KD\). Chứng minh: \(E,I,N\) thẳng hàng.
Lời giải

a) Xét \(\Delta AHC\) và \(\Delta KCH\) có
\(AH = HK\) (\(H\) là trung điểm của \(AK\))
\(\widehat {AHC} = \widehat {CHK}\) (\(AH \bot BC\))
\(CH\) là cạnh chung
Do đó \(\Delta AHC = \Delta KHC\) (cgc).
b) Vì \[\Delta AHC = \Delta KHC\] (chứng minh trên) do đó \[AC = CK\] (2 cạnh tương ứng) (1)
Xét \[\Delta AEC\] và \[\Delta DEB\] ta có :
\[AE = ED\] (\[E\] là trung điểm của \[AD\])
\[BE = CE\] (\[E\] là trung điểm của \[BE\]) \[\widehat {AEC} = \widehat {BEC}\] (đối đỉnh)
Do đó \[\Delta AEC = \Delta DEB\] (c.g.c), suy ra \[AC = DB\] (2 cạnh tương ứng) (2)
Từ (1) và (2) suy ra \[BD = AC = CK\].
c) Xét \[\Delta AHC\] và \[\Delta KHE\] ta có \[AH = KH\], \[\widehat {AHE} = \widehat {KHE}\], \[HE\] là cạnh chung
Suy ra \[\Delta AHC = \Delta KHE\] (c.g.c) do đó \[\widehat {AEH} = \widehat {KEH}\] (2 góc tương ứng)
Suy ra \[EH\] là tia phân giác \[AEK\].
Vì \[\Delta AHE = \Delta KHE\] nên \[AE = KE\] mà \[AE = ED\]
Suy ra \[KE = ED\] do đó \[\Delta KED\] cân tại \[E\] nên \[\widehat {EKD} = \widehat {EDK}\].
\[\widehat {EDK} + \widehat {KED} = 90^\circ \] nên \[\widehat {EKD} = \frac{{180^\circ - \widehat {KED}}}{2}\]
Lại có \[\widehat {AKE} + \widehat {KED} = 180^\circ \] suy ra \[\widehat {AKE} = 180^\circ - \widehat {KED}\].
\[\widehat {AEH} + \widehat {HEK} = 180^\circ - \widehat {KED}\]
\[\widehat {HEK} = 180^\circ - \widehat {KED}\]
\[\widehat {HEK} = \frac{{180^\circ - \widehat {KED}}}{2}\] (4)
Từ (3) và (4) suy ra \[\widehat {HEK} = \widehat {ABC}\] mà chúng là 2 góc so le trong
Do đó \[HE{\rm{//}}KD\] hay \[BC{\rm{//}}KD\].
d) Xét \[\Delta KEN\] và \[\Delta DEN\] \[CE = ED\] (\[EN\] chung) \[KN = ND\] (\[N\] là trung điểm của \[KD\])
Suy ra \[\Delta KEN = \Delta DEN\] (c.c.c) nên \[\widehat {ENK} = \widehat {END}\] mà \[\widehat {ENK} + \widehat {END} = 180^\circ \].
Suy ra \[\widehat {ENC} = \widehat {END} = \frac{{180^\circ }}{2} = 90^\circ \] hay \[EN \bot KD\]. (*)
\[\Delta KBE = \Delta DCE\] suy ra \[BK = CD\] (2 cạnh tương ứng)
\[\Delta BKD = \Delta CDK\] (c.c.c) do đó \[\widehat {BDK} = \widehat {CKD}\] (2 góc tương ứng)
Suy ra \[\Delta KID\] cân tại \[I\] nên \[IK = ID\] xét \[\Delta KIN = \Delta DIN\] do đó \[\widehat {INK} - \widehat {IND}\].
Mà \[\widehat {INK} + \widehat {IND} = 180^\circ \] suy ra \[\widehat {INK} = \widehat {IND} = 90^\circ \] hay \[IN \bot KD\]. (**)
Từ (*) và (**) suy ra \(E,I,N\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
