Trong một kì thi có 60% thí sinh đỗ. Hai bạn \(A,B\) cùng dự kì thi đó. Xác suất để chỉ có một bạn đỗ là:
A. \(0,24\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Bạn A đỗ kì thi đó”; \(B\) là biến cố “Bạn B đỗ kì thi đó”.
Xác suất chỉ có 1 bạn đỗ là \(P\left( {A\overline B \cup \overline A B} \right) = P\left( A \right)P\left( {\overline B } \right) + P\left( {\overline A } \right)P\left( B \right)\)\( = 0,6 \cdot 0,4 + 0,4 \cdot 0,6 = 0,48\). Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).
Lời giải
Nhóm \(\left[ {{u_1};{u_2}} \right)\) có giá trị đại diện là \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\). Chọn A.
Câu 2
A. \(0,42\).
Lời giải
Gọi \(A\) là biến cố “Người thứ nhất ném trúng rổ”; \(B\) là biến cố “Người thứ hai ném trúng rổ”;
\(C\) là biến cố “Ít nhất một vận động viên ném trúng rổ”.
Khi đó \(C = A \cup B\). Khi đó \(P\left( C \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = 1 - 0,2 \cdot 0,3 = 0,94\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. 30.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.