Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng có dạng \(\frac{a}{b}\). Tính \(a + b\).
Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng có dạng \(\frac{a}{b}\). Tính \(a + b\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Cánh diều Chương 5 có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.
Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).
Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).
Giả sử Bình thắng ở lần rút thứ n.
Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là
\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).
Do đó xác suất để Bình thắng là:
\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).
Vì \(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).
Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).
Trả lời: 62.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do số bệnh nhân đến khám là số nguyên nên ta hiệu chỉnh lại như sau:
|
Số bệnh nhân |
\(\left[ {0,5;10,5} \right)\) |
\(\left[ {10,5;20,5} \right)\) |
\(\left[ {20,5;30,5} \right)\) |
\(\left[ {30,5;40,5} \right)\) |
\(\left[ {40,5;50,5} \right)\) |
|
Số ngày |
7 |
8 |
7 |
6 |
2 |
Tổng số ngày khám là \(7 + 8 + 7 + 6 + 2 = 30\).
Gọi \({x_1};{x_2};...;{x_{30}}\) là số bệnh nhân đến khám mỗi ngày xếp theo thứ tự không giảm.
Tứ phân vị thứ nhất là \({x_8} \in \left[ {10,5;20,5} \right)\).
Ta có \({Q_1} = 10,5 + \frac{{\frac{{30}}{4} - 7}}{8} \cdot 10 = 11,125\).
Tứ phân vị thứ hai là \(\frac{{{x_{15}} + {x_{16}}}}{2} \in \left[ {10,5;20,5} \right)\).
Vì \({x_{15}} \in \left[ {10,5;20,5} \right);{x_{16}} \in \left[ {20,5;30,5} \right)\) nên tứ phân vị thứ hai của mẫu số liệu là \({Q_2} = 20,5\).
Tứ phân vị thứ ba là \({x_{23}} \in \left[ {30,5;40,5} \right)\).
Ta có \({Q_3} = 30,5 + \frac{{\frac{{3 \cdot 30}}{4} - 22}}{6} \cdot 10 \approx 31,3\).
b) Vì \({Q_1};{Q_2};{Q_3}\) đều nhỏ hơn 35 nên nhận định của đề bài không hợp lí.
Lời giải
Gọi \(A\) là biến cố “An thắng trận cầu lông”.
TH1: An thắng cả ba sét đầu.
Khi đó \({P_1} = {0,4^3} = 0,064\).
TH2: An thắng khi thi đấu 4 sét đầu
Khi đó \({P_2} = 3 \cdot {\left( {0,4} \right)^3} \cdot 0,6 = 0,1152\).
TH3: An thắng khi thi đấu 5 sét
Khi đó \({P_3} = C_4^2 \cdot {0,4^3} \cdot {0,6^2} = 0,13824\).
Vậy \(P\left( A \right) = {P_1} + {P_2} + {P_3} = 0,064 + 0,1152 + 0,13824 = 0,31744\).
Câu 3
A. \(0,42\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Số cuộc gọi trung bình mỗi ngày là 8,1.
b) Nhóm chứa mốt là \(\left[ {5,5;8,5} \right)\).
c) Mốt của mẫu số liệu ghép nhóm là \( \approx 7,21\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{1}{2}\left( {{u_1} + {u_2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.