Cho \(\Delta ABC\) nhọn. Gọi \(M\) là trung điểm của \(BC.\) Gọi \(I\) là trung điểm của \(AM\) và \(E\) là giao điểm của \(CI\) và \(AB.\) Từ \(M\) kẻ đường thẳng song song với \(CE\) cắt \(AB\) tại \(F.\)
Quảng cáo
Trả lời:
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.

a) \(\Delta BEC\) có: \(M\) là trung điểm của \(BC,\;FM\;{\rm{//}}\;CE\) nên \(F\) là trung điểm của \(BE.\) Do đó, \(BE = 2FE.\)
Do đó, ý a) là đúng.
b) \(\Delta AFM\) có: \(I\) là trung điểm của \(AM,\;EI\;{\rm{//}}\;FM\) nên \(E\) là trung điểm của \(AF.\)
Do đó, \(FE = AE.\) Mà \(FB = FE\) (do \(F\) là trung điểm của \(BE\)) nên \(FE = AE = FB = \frac{1}{3}AB.\)
Suy ra, \(AF = \frac{2}{3}AB.\)
Do đó, ý b) là đúng.
c) \(\Delta AFM\) có: \(I\) là trung điểm của \(AM,\;E\) là trung điểm của \(AF\) nên \(IE\) là đường trung bình của \(\Delta AFM.\) Do đó, \(FM = 2EI.\)
Do đó, ý c) là sai.
d) \(\Delta BEC\) có \(M\) là trung điểm của \(BC,\;F\) là trung điểm của \(BE\) nên \(FM\) là đường trung bình của \(\Delta BEC.\) Do đó, \(EC = 2MF.\) Lại có: \(FM = 2EI\) nên \(EC = 4EI\) hay \(EI = \frac{1}{4}EC.\)
Vì \(EC = EI + IC\) nên \(IC = EC - IE = EC - \frac{1}{4}EC = \frac{3}{4}EC.\) Vậy \(IC = \frac{3}{4}EC.\)
Do đó, ý d) là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:
\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)
\(E{C^2} = {3^2} + {4^2}\,\)
\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\).
Do đó, ý a) đúng.
b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).
Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).
Do đó, ý b) là sai.
c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).
Do đó, ý c) là đúng.
d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)
Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).
Vậy chiều cao \(AB\) của tòa nhà là 54 m.
Do đó, ý d) là đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Đúng. c) Sai. d) Sai.
a) Quan sát biểu đồ, nhận thấy năm có sản lượng thủy hải sản nuôi trồng nhiều nhất là năm 2020.
Do đó, ý a) là đúng.
b) Quan sát biểu đồ, năm có sản lượng thủy hải sản nuôi trồng ít nhất là năm 2015.
Do đó, ý b) là đúng.
c) Sản lượng thủy hải sản nuôi trồng năm 2020 so với năm 2019 là: \(\frac{{1{\rm{ }}166}}{{1{\rm{ }}046}} \cdot 100\% \approx 111,5\% \).
Do đó, sản lượng thủy hải sản nuôi trồng năm 2020 tăng so với năm 2019 là \(111,5\% - 100\% = 11,5\% \)
Do đó, ý c) là sai.
d) Tổng sản lượng nuôi trồng thủy hải sản ở Đà Nẵng qua các năm 2015; 2018; 2019; 2020 là:
\(807 + 993 + 1{\rm{ }}046 + 1{\rm{ }}166 = 4{\rm{ }}012\) (tấn).
So với năm 2015, sản lượng nuôi trồng thủy hải sản năm 2018 là: \(\frac{{993}}{{807}} \cdot 100\% \approx 123\% \).
Do đó, năm 2018 sản lượng nuôi trồng thủy hải sản tăng so với năm 2015 là: \(123\% - 100\% = 23\% \).
Do đó, ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



