Biểu đồ dưới đây biểu diễn tỉ lệ phần trăm khối lượng gạo bán được của các loại gạo trong một ngày của cửa hàng A:

Biết rằng ngày hôm đó cửa hàng A bán được 18 kg gạo nếp. Hỏi cửa hàng bán được bao nhiêu kg gạo trắng trong ngày hôm đó?
Biểu đồ dưới đây biểu diễn tỉ lệ phần trăm khối lượng gạo bán được của các loại gạo trong một ngày của cửa hàng A:

Biết rằng ngày hôm đó cửa hàng A bán được 18 kg gạo nếp. Hỏi cửa hàng bán được bao nhiêu kg gạo trắng trong ngày hôm đó?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: 90,4
Theo biểu đồ ta có: Cửa hàng bán được \(9\% \) khối lượng gạo nếp, \(45,2\% \) gạo trắng ngày hôm đó.
Hôm đó cửa hàng bán được số kg gạo là:\(18:9\% = 200\;\left( {{\rm{kg}}} \right).\)
Hôm đó cửa hàng bán được số kg gạo trắng là: \(200 \cdot 45,2\% = 90,4\;\left( {{\rm{kg}}} \right).\)
Vậy cửa hàng hôm đó bán được 90,4 kg gạo trắng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:
\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)
\(E{C^2} = {3^2} + {4^2}\,\)
\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\).
Do đó, ý a) đúng.
b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).
Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).
Do đó, ý b) là sai.
c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).
Do đó, ý c) là đúng.
d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)
Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).
Vậy chiều cao \(AB\) của tòa nhà là 54 m.
Do đó, ý d) là đúng.
Lời giải
Hướng dẫn giải
Đáp án: 0,4
Các kết quả có thể xảy ra khi lập một số có ba chữ số khác nhau từ các số \(1,2,3,4,6\) là: \(5.4.3 = 60\).
Gọi \(A\) là biến cố “Số được chọn chia hết cho 3”.
Nhận thấy ta lập được 4 bộ số gồm 3 chữ số có tổng chia hết cho 3 là:
\(\left( {1;2;3} \right);{\rm{ }}\left( {1;2;6} \right);{\rm{ }}\left( {2;3;4} \right);{\rm{ }}\left( {2;4;6} \right)\).
Mỗi bộ số, ta lập được các số có ba chữ số là: \(3.2.1 = 6\) (số)
Do đó, 4 bộ số thì lập được các số có tổng chữ số chia hết cho 3 là: \(6.4 = 24\) (số)
Suy ra số kết quả thuận lợi của biến cố “Số được chọn chia hết cho 3” là: \(24\)số.
Xác suất của biến cố \(A\) là: \(\frac{{24}}{{60}} = \frac{2}{5} = 0,4.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



