Số liệu thống kê về các vụ tai nạn giao thông ở một thành phố cho trong bảng sau:
Phương tiện
Ô tô
Xe máy
Xe đạp
Phương tiện khác hoặc đi bộ
Số vụ tai nạn
400
\(1\;\,200\)
60
40
Tính xác suất lý thuyết của biến cố \(G:\) “Gặp tai nạn khi đi xe đạp hoặc xe máy” (Kết quả ghi dưới dạng số thập phân, làm tròn kết quả đến hàng phần trăm).
Số liệu thống kê về các vụ tai nạn giao thông ở một thành phố cho trong bảng sau:
|
Phương tiện |
Ô tô |
Xe máy |
Xe đạp |
Phương tiện khác hoặc đi bộ |
|
Số vụ tai nạn |
400 |
\(1\;\,200\) |
60 |
40 |
Tính xác suất lý thuyết của biến cố \(G:\) “Gặp tai nạn khi đi xe đạp hoặc xe máy” (Kết quả ghi dưới dạng số thập phân, làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: 0,74
Xác suất thực nghiệm của biến cố \(G\) là: \(\frac{{60 + 1\;\,200}}{{60 + 1\;\,200 + 400 + 40}} \approx 0,74.\)
Do đó, xác suất lý thuyết của biến cố \(G\) bằng khoảng \(0,74.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đúng. b) Sai. c) Sai. d) Đúng.
a) Số máy giặt cửa hàng 1 bán được trong tháng 5 và tháng 6 năm 2025 lần lượt là 30 chiếc và 47 chiếc.
Do đó, ý a) là đúng.
b) Tổng số máy giặt cả ba cửa hàng bán được trong tháng 5 là: \(30 + 42 + 53 = 125\) (chiếc).
Vậy trong tháng 5, tổng số chiếc máy giặt cả ba cửa hàng bán được ít hơn 130 chiếc.
Do đó, ý b) là sai.
c) Vì \(30 < 47,\;42 < 71,\;53 < 88\) nên cả ba cửa hàng đều bán được số máy giặt tháng 5 ít hơn tháng 6.
Do đó, ý c) là sai.
d) So với tháng 5 thì trong tháng 6, các cửa hàng đã tăng số phần trăm là:
Cửa hàng 1 tăng: \(\frac{{\left( {47 - 30} \right)}}{{30}} \cdot 100\% \approx 56,7\% \).
Cửa hàng 2 tăng: \(\frac{{\left( {71 - 42} \right)}}{{42}} \cdot 100\% \approx 69\% .\)
Cửa hàng 3 tăng: \(\frac{{\left( {88 - 53} \right)}}{{53}} \cdot 100\% \approx 66\% .\)
Tỉ lệ tăng trưởng về số máy tính bán được ở tháng 6 so với tháng 5 ở cửa hàng thứ 2 là cao nhất.
Do đó, ý d) là sai.
Câu 2
Lời giải
Đáp án đúng là: a) Đúng. b) Sai. c) Đúng. d) Đúng.
a) Áp dụng định lí Pythagore vào tam giác \(EDC\) vuông tại \(D\), có:
\(E{C^2} = D{C^2} + D{E^2}\,\)(định lí Pythagore)
\(E{C^2} = {3^2} + {4^2}\,\)
\(EC = \sqrt {{3^2} + {4^2}\,} = 5\,\,\left( {\rm{m}} \right)\).
Do đó, ý a) đúng.
b) Có \(EB \bot DC,\,\,EB \bot AB\) nên \(CD\parallel AB\).
Do đó, xét tam giác \(EAB\) có: \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) (hệ quả của định lí Thalès).
Do đó, ý b) là sai.
c) Có \(\frac{{ED}}{{EB}} = \frac{{EC}}{{EA}}\) hay \(\frac{4}{{72}} = \frac{5}{{EA}}\) nên \(AE = \frac{{72 \cdot 5}}{4} = 90\,\,\left( {\rm{m}} \right)\).
Do đó, ý c) là đúng.
d) Xét tam giác \(AEB\) vuông tại \(D\) có: \(A{E^2} = A{B^2} + B{E^2}\) (định lí Pythagore)
Do đó, \(AB = \sqrt {{{90}^2} - {{72}^2}} = 54\,\,\left( {\rm{m}} \right)\).
Vậy chiều cao \(AB\) của tòa nhà là 54 m.
Do đó, ý d) là đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


