Một ca nô xuôi dòng từ A đến B hết 1 giờ 20 phút và ngược dòng hết 2 giờ. Bết vận tốc dòng nước là \[3\]km/h. Tính vận tốc riêng của ca nô?
Một ca nô xuôi dòng từ A đến B hết 1 giờ 20 phút và ngược dòng hết 2 giờ. Bết vận tốc dòng nước là \[3\]km/h. Tính vận tốc riêng của ca nô?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đổi 1 giờ 20 phút \[ = \frac{4}{3}\] giờ.
Gọi vận tốc riêng của ca nô là \[x\] (km/h) \[\left( {x > 3} \right).\]
Vận tốc của ca nô khi xuôi dòng là \[x + 3\] (km/h).
Vận tốc của ca nô khi ngược dòng là \[x - 3\] (km/h).
Quãng đường ca nô khi xuôi dòng là \[\frac{4}{3}\left( {x + 3} \right)\] (km).
Quãng đường ca nô khi ngược dòng là \[2\left( {x--3} \right)\](km).
Vì quãng đường ca nô khi xuôi dòng và ngược dòng bằng nhau nên ta có phương trình:
\[\frac{4}{3}\left( {x + 3} \right) = 2\left( {x - 3} \right)\]
\[4\left( {x + 3} \right) = 6\left( {x - 3} \right)\]
\[4x + 12 = 6x - 18\]
\[4x - 6x = - 18 - 12\]
\[ - 2x = - 30\]
\[x = 15\] (thỏa mãn).
Vậy vận tốc riêng của ca nô là \[15\] km/h.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Xét \(\Delta ABD\) có \(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (tính chất đường phân giác trong tam giác). b) Xét \(\Delta ACD\) có \(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác). |
|
Mà \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] nên \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]
c) Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).
Lời giải
|
a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị). Vì \(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị). Mà \(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\) Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\) |
|
Tam giác \(AEK\) có \(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)
b) Xét \(\Delta ACD\) có \(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)
Mà \(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)
Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)
Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)
c) Xét \(\Delta BMK\) có \(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)
Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


