Một số tự nhiên gồm hai chữ số có tổng của hai chữ số đó bằng 12. Nếu đổi chỗ hai chữ số đó cho nhau thì ta được một số mới bé hơn số ban đầu là 18 đơn vị. Tìm số ban đầu.
Một số tự nhiên gồm hai chữ số có tổng của hai chữ số đó bằng 12. Nếu đổi chỗ hai chữ số đó cho nhau thì ta được một số mới bé hơn số ban đầu là 18 đơn vị. Tìm số ban đầu.
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi \(x\) là chữ số hàng chục của số cần tìm \((x \in \mathbb{N}\) và \(0 < x \le 9).\)
Khi đó chữ số hàng đơn vị là: \(12 - x.\)
Độ lớn số ban đầu là: \[10x + \left( {12 - x} \right).\]
Khi đổi chỗ hai chữ số đó cho nhau thì số mới có chữ số hàng chục là: \(12 - x\) và chữ số hàng đơn vị là \(x.\) Số mới có độ lớn là: \(10\left( {12 - x} \right) + x.\)
Sau khi đổi chỗ thì số mới bé hơn số ban đầu là 18 đơn vị nên ta có phương trình:
\(\left[ {10x + \left( {12 - x} \right)} \right] - \left[ {10\left( {12 - x} \right) + x} \right] = 18\)
\(10x + 12 - x - 120 + 10x - x = 18\)
\[10x - x + 10x - x = 18 - 12 + 120\]
\(18x = 126\)
\(x = 7\) (thỏa mãn).
Khi số cần tìm có chữ số hàng chục là 7 và chữ số hàng đơn vị là \(12 - 7 = 5.\)
Vậy số cần tìm là: 75.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Xét \(\Delta ABD\) có \(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (tính chất đường phân giác trong tam giác). b) Xét \(\Delta ACD\) có \(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác). |
|
Mà \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] nên \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]
c) Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).
Lời giải
|
a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị). Vì \(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị). Mà \(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\) Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\) |
|
Tam giác \(AEK\) có \(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)
b) Xét \(\Delta ACD\) có \(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)
Mà \(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)
Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)
Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)
c) Xét \(\Delta BMK\) có \(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)
Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

