Câu hỏi:

04/12/2025 8 Lưu

Vào thế kỉ thứ III trước công nguyên, vua xứ Syracuse giao cho Archimedes kiểm tra xem chiếc mũ bằng vàng của mình có pha thêm bạc hay không. Chiếc mũ có trọng lượng 5 Newton (theo đơn vị hiện nay), khi nhúng ngập trong nước thì trọng lượng giảm đi 0,3 Newton. Biết rằng khi cân trong nước, vàng giảm \[\frac{1}{{20}}\] trọng lượng, bạc giảm \[\frac{1}{{10}}\] trọng lượng. Hỏi chiếc mũ chứa bao nhiêu gam bạc (vật có khối lượng 100 gam thì trọng lượng bằng 1 Newton)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi trọng lượng bạc trong mũ \(x\) (Newton) \(\left( {0 < x < 5} \right).\)

Trọng lượng vàng trong mũ là \(5 - x\) (Newton).

Khi nhúng ngập trong nước, trọng lượng bạc giảm \(\frac{x}{{10}}\) (Newton), trọng lượng vàng giảm \(\frac{{5 - x}}{{20}}\) (Newton).

Mà trọng lượng của mũ giảm đi 0,3 Newton nên ta có phương trình:

\(\frac{x}{{10}} + \frac{{5 - x}}{{20}} = 0,3\)

\(\frac{{2x}}{{20}} + \frac{{5 - x}}{{20}} = \frac{{0,3 \cdot 20}}{{20}}\)

\(2x + 5 - x = 6\)

\(x = 1\) (thỏa mãn).

Do đó trọng lượng bạc trong mũ là 1 Newton.

Vậy chiếc mũ chứa 100 gam bạc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABC\) \(AB \bot AC;\,\,IN \bot AC\) nên \(AB\,{\rm{//}}\,IN.\)

\(I\) là trung điểm của \(BC\) nên \(IN\) là đường trung bình của tam giác, do đó \(N\) là trung điểm của \(AC.\)

Xét tứ giác \(ADCI\) có: \(N\) là trung điểm của \(ID,\,\,AC\) nên \(ADCI\) là hình bình hành.

Cho tam giác \(ABC\) vuông tại \(A (ảnh 1)

Lại có \(IN \bot AC\) hay \(ID \bot AC\) nên hình bình hành \(ADCI\) là hình thoi.\(\)

b) Kẻ \(IH\,{\rm{//}}\,BK\,\,\left( {H \in CD} \right),\)\(I\) là trung điểm của \(BC,\) nên \(IH\) là đường trung bình của \(\Delta BKC.\) Do đó \(H\) là trung điểm của \(KC\) hay \(KH = HC\,\,\left( 1 \right)\)

Xét \[\Delta DIH\]\(N\) là trung điểm của \[DI\]\[NK\,{\rm{//}}\,IH\] (do \[BK\,{\rm{//}}\,IH)\] nên \(NK\) là đường trung bình của \[\Delta DIH,\] suy ra \(K\)là trung điểm của \(DH\) hay \(DK = KH\,\,\left( 2 \right)\)

Cho tam giác \(ABC\) vuông tại \(A (ảnh 2)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra \(DK = KH = HC.\) Do đó \(\frac{{DK}}{{DC}} = \frac{1}{3}.\)

Lời giải

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

\(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).

\(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

Cho tam giác \(ABC\) có \(AB < AC (ảnh 1)

Tam giác \(AEK\)\(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

b) Xét \(\Delta ACD\)\(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

\(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

c) Xét \(\Delta BMK\)\(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP