Câu hỏi:

04/12/2025 20 Lưu

Hiệu số đo chu vi của hai hình vuông bằng 20 m và hiệu số đo diện tích của chúng bằng 65 m2. Tìm số đo các cạnh của mỗi hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi độ dài cạnh hình vuông nhỏ là \(x\) (m) \(\left( {x > 0} \right).\)

Chu vi của hình vuông nhỏ là \(4x\) (m).

Do hiệu số đo chu vi của hai hình vuông bằng 20 m nên chu vi của hình vuông lớn là \(4x + 20\) (m).

Khi đó, cạnh của hình vuông lớn là: \(\frac{{4x + 20}}{4} = \frac{{4\left( {x + 5} \right)}}{4} = x + 5\) (m).

Diện tích của hình vuông nhỏ là \({x^2}\) (m2) và diện tích của hình vuông lớn là \({\left( {x + 5} \right)^2}\) (m2).

Vì hiệu số đo diện tích của chúng bằng \(65\;{{\rm{m}}^2}\) nên ta có phương trình:

\({\left( {x + 5} \right)^2} - {x^2} = 65\)

\({x^2} + 10x + 25 - {x^2} = 65\)

\(10x = 40\)

    \(x = 4\) (thỏa mãn).

Vậy cạnh của hình vuông nhỏ và lớn lần lượt là: .\(4\;{\rm{m}}\).\(9\;\,{\rm{m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét \(\Delta ABD\)\(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (tính chất đường phân giác trong tam giác).

b) Xét \(\Delta ACD\)\(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác).

Cho  \(\Delta ABC\) trung tuyến \(AD.\) (ảnh 1)

\[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] nên \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]

c) Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).

Lời giải

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

\(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).

\(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

Cho tam giác \(ABC\) có \(AB < AC (ảnh 1)

Tam giác \(AEK\)\(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

b) Xét \(\Delta ACD\)\(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

\(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

c) Xét \(\Delta BMK\)\(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)