Câu hỏi:

04/12/2025 8 Lưu

Hiệu số đo chu vi của hai hình vuông bằng 20 m và hiệu số đo diện tích của chúng bằng 65 m2. Tìm số đo các cạnh của mỗi hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi độ dài cạnh hình vuông nhỏ là \(x\) (m) \(\left( {x > 0} \right).\)

Chu vi của hình vuông nhỏ là \(4x\) (m).

Do hiệu số đo chu vi của hai hình vuông bằng 20 m nên chu vi của hình vuông lớn là \(4x + 20\) (m).

Khi đó, cạnh của hình vuông lớn là: \(\frac{{4x + 20}}{4} = \frac{{4\left( {x + 5} \right)}}{4} = x + 5\) (m).

Diện tích của hình vuông nhỏ là \({x^2}\) (m2) và diện tích của hình vuông lớn là \({\left( {x + 5} \right)^2}\) (m2).

Vì hiệu số đo diện tích của chúng bằng \(65\;{{\rm{m}}^2}\) nên ta có phương trình:

\({\left( {x + 5} \right)^2} - {x^2} = 65\)

\({x^2} + 10x + 25 - {x^2} = 65\)

\(10x = 40\)

    \(x = 4\) (thỏa mãn).

Vậy cạnh của hình vuông nhỏ và lớn lần lượt là: .\(4\;{\rm{m}}\).\(9\;\,{\rm{m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABC\) \(AB \bot AC;\,\,IN \bot AC\) nên \(AB\,{\rm{//}}\,IN.\)

\(I\) là trung điểm của \(BC\) nên \(IN\) là đường trung bình của tam giác, do đó \(N\) là trung điểm của \(AC.\)

Xét tứ giác \(ADCI\) có: \(N\) là trung điểm của \(ID,\,\,AC\) nên \(ADCI\) là hình bình hành.

Cho tam giác \(ABC\) vuông tại \(A (ảnh 1)

Lại có \(IN \bot AC\) hay \(ID \bot AC\) nên hình bình hành \(ADCI\) là hình thoi.\(\)

b) Kẻ \(IH\,{\rm{//}}\,BK\,\,\left( {H \in CD} \right),\)\(I\) là trung điểm của \(BC,\) nên \(IH\) là đường trung bình của \(\Delta BKC.\) Do đó \(H\) là trung điểm của \(KC\) hay \(KH = HC\,\,\left( 1 \right)\)

Xét \[\Delta DIH\]\(N\) là trung điểm của \[DI\]\[NK\,{\rm{//}}\,IH\] (do \[BK\,{\rm{//}}\,IH)\] nên \(NK\) là đường trung bình của \[\Delta DIH,\] suy ra \(K\)là trung điểm của \(DH\) hay \(DK = KH\,\,\left( 2 \right)\)

Cho tam giác \(ABC\) vuông tại \(A (ảnh 2)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra \(DK = KH = HC.\) Do đó \(\frac{{DK}}{{DC}} = \frac{1}{3}.\)

Lời giải

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

\(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).

\(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

Cho tam giác \(ABC\) có \(AB < AC (ảnh 1)

Tam giác \(AEK\)\(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

b) Xét \(\Delta ACD\)\(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

\(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

c) Xét \(\Delta BMK\)\(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP