Câu hỏi:

04/12/2025 9 Lưu

Lúc 6 giờ sáng, bạn Hải đi xe đạp từ điểm \[A\] đến trường (tại điểm \(B)\) phải leo lên và xuống một con dốc với đỉnh dốc tại điểm \[C\] (như hình vẽ).

Lúc 6 giờ sáng, bạn Hải đi xe đạp t (ảnh 1)

Điểm \(H\) là một điểm thuộc đoạn thẳng \[AB\] sao cho \[CH\] đường là phân giác \(\widehat {ACB},\) \[AH = 0,32{\rm{\;km}}\]\[BH = 0,4{\rm{\;km}}.\] Biết bạn Hải đi xe đạp đến \[C\] lúc 6 giờ 30 phút với tốc độ trung bình lên dốc là 4 km/h. Hỏi bạn Hải đến trường lúc mấy giờ nếu tốc độ trung bình xuống dốc là 10 km/h?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lúc 6 giờ sáng, bạn Hải đi xe đạp t (ảnh 2)

Thời gian để bạn Hải đi từ \[A\] đến \[C\] là: \[6\] giờ \[30\] phút \( - \,\,6\) giờ \[ = 30\] phút \[ = 0,5\] giờ.

Quãng đường mà bạn Hải đi từ \[A\] đến \[C\] trong \(0,5\) giờ với tốc độ trung bình lên dốc 4 km/h là: \[AC = {S_{A \to C}} = 4 \cdot 0,5 = 2\] (km).

Xét \(\Delta ACB\)\[CH\] là đường phân giác của \(\widehat {ACB},\) nên ta có: \(\frac{{HA}}{{HB}} = \frac{{CA}}{{CB}}\) hay \(\frac{{0,32}}{{0,4}} = \frac{2}{{CB}}\)  Suy ra \(CB = \frac{{0,4 \cdot 2}}{{0,32}} = 2,5\) (km).

Thời gian để bạn Hải đi hết quãng đường \(2,5\) km với tốc độ trung bình xuống dốc 10 km/h là: \(\frac{{2,5}}{{10}} = 0,25\) (giờ).

Như vậy, tổng thời gian bạn Hải đi từ \[A\] đến trường \[B\]

\[0,5 + 0,25 = 0,75\] (giờ) \[ = 45\] (phút).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABC\) \(AB \bot AC;\,\,IN \bot AC\) nên \(AB\,{\rm{//}}\,IN.\)

\(I\) là trung điểm của \(BC\) nên \(IN\) là đường trung bình của tam giác, do đó \(N\) là trung điểm của \(AC.\)

Xét tứ giác \(ADCI\) có: \(N\) là trung điểm của \(ID,\,\,AC\) nên \(ADCI\) là hình bình hành.

Cho tam giác \(ABC\) vuông tại \(A (ảnh 1)

Lại có \(IN \bot AC\) hay \(ID \bot AC\) nên hình bình hành \(ADCI\) là hình thoi.\(\)

b) Kẻ \(IH\,{\rm{//}}\,BK\,\,\left( {H \in CD} \right),\)\(I\) là trung điểm của \(BC,\) nên \(IH\) là đường trung bình của \(\Delta BKC.\) Do đó \(H\) là trung điểm của \(KC\) hay \(KH = HC\,\,\left( 1 \right)\)

Xét \[\Delta DIH\]\(N\) là trung điểm của \[DI\]\[NK\,{\rm{//}}\,IH\] (do \[BK\,{\rm{//}}\,IH)\] nên \(NK\) là đường trung bình của \[\Delta DIH,\] suy ra \(K\)là trung điểm của \(DH\) hay \(DK = KH\,\,\left( 2 \right)\)

Cho tam giác \(ABC\) vuông tại \(A (ảnh 2)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra \(DK = KH = HC.\) Do đó \(\frac{{DK}}{{DC}} = \frac{1}{3}.\)

Lời giải

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

\(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).

\(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

Cho tam giác \(ABC\) có \(AB < AC (ảnh 1)

Tam giác \(AEK\)\(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

b) Xét \(\Delta ACD\)\(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

\(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

c) Xét \(\Delta BMK\)\(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Theo câu a, ta có \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP