Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}.\)
a) Viết điều kiện xác định của biểu thức \[B.\]
b) Chứng minh \(B = \frac{4}{{x + 1}}.\)
c) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
d) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Cho biểu thức \(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}.\)
a) Viết điều kiện xác định của biểu thức \[B.\]
b) Chứng minh \(B = \frac{4}{{x + 1}}.\)
c) Tính giá trị của biểu thức \[B\] tại \(x = - \frac{1}{2}.\)
d) Tìm các số nguyên \[x\] để giá trị của biểu thức \[B\] là số nguyên.
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \(1 - {x^2} = - \left( {{x^2} - 1} \right) = - \left( {x - 1} \right)\left( {x + 1} \right).\)
Khi đó, điều kiện xác định của biểu thức \(B\) là \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\1 - {x^2} \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - 1 \ne 0\\x + 1 \ne 0\\ - \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\end{array} \right.,\) tức là \(\left\{ \begin{array}{l}x \ne 1\\x \ne - 1\end{array} \right..\)
Vậy để \(B\) xác định thì \(x \ne 1\) và \(x \ne - 1.\)
b) Với \(x \ne 1\) và \(x \ne - 1\) ta có:
\(B = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} + \frac{4}{{1 - {x^2}}}\)\( = \frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} - \frac{4}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2} - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right) - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \frac{{4x - 4}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{{4\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)\( = \frac{4}{{x + 1}}\).
Vậy với \(x \ne 1\) và \(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)
c) Với \(x = - \frac{1}{2}\) thoả mãn điều kiện xác định, thay vào biểu thức \(B = \frac{4}{{x + 1}},\) ta được:
\(B = \frac{4}{{ - \frac{1}{2} + 1}} = \frac{4}{{\frac{1}{2}}} = 8.\)
Vậy với \(x = - \frac{1}{2}\) thì \(B = 8.\)
d) Với \(x \ne 1\) và \(x \ne - 1\) thì \(B = \frac{4}{{x + 1}}.\)
Với \(x\) là số nguyên, để \(B\) nhận giá trị nguyên thì \(x + 1\) là ước của \(4.\)
Mà Ư\(\left( 4 \right) = \left\{ {1;\,\, - 1;\,\,2;\,\, - 2;\,\,4;\,\, - 4} \right\}.\)
Ta có bảng sau:
|
\(x + 1\) |
\(1\) |
\( - 1\) |
\(2\) |
\( - 2\) |
\(4\) |
\( - 4\) |
|
\(x\) |
\(0\) |
\( - 2\) |
\(1\) |
\( - 3\) |
\(3\) |
\( - 5\) |
Do đó: \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,1;\,\,3} \right\}.\)
Mà \(x \ne 1\) và \(x \ne - 1\) nên \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)
Vậy để \(B\) nhận giá trị nguyên thì \(x \in \left\{ { - 5;\,\, - 3;\,\, - 2;\,\,0;\,\,3} \right\}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
c) \[\frac{{x + 5}}{{2x - 3}} - \frac{{2x - 7}}{{3 - 2x}} - \frac{{x + 4}}{{3 - 2x}} = \frac{{x + 5}}{{2x - 3}} + \frac{{2x - 7}}{{2x - 3}} + \frac{{x + 4}}{{2x - 3}}\]
\[ = \frac{{x + 5 + 2x - 7 + x + 4}}{{2x - 3}} = \frac{{4x + 2}}{{2x - 3}}.\]
Lời giải
Hướng dẫn giải
a) Ta có: \[{x^2} + x - 6 = {x^2} - 2x + 3x - 6 = x\left( {x - 2} \right) + 3\left( {x - 2} \right) = \left( {x - 2} \right)\left( {x + 3} \right).\]
Khi đó, điều kiện xác định của biểu thức \(C\) là \(\left\{ \begin{array}{l}x + 3 \ne 0\\{x^2} + x - 6 \ne 0\\2 - x \ne 0\end{array} \right.,\) hay \(\left\{ \begin{array}{l}x \ne - 3\\\left( {x - 2} \right)\left( {x + 3} \right) \ne 0\\x \ne 2\end{array} \right.,\) tức là \(x \ne - 3\) và \(x \ne 2.\)
Vậy biểu thức \(C\) xác định khi \(x \ne - 3\) và \(x \ne 2.\)
b) Với \(x \ne - 3\) và \(x \ne 2,\) ta có:
\[C = \frac{{x + 2}}{{x + 3}} - \frac{5}{{{x^2} + x - 6}} + \frac{1}{{2 - x}}\]\[ = \frac{{x + 2}}{{x + 3}} - \frac{5}{{\left( {x + 3} \right)\left( {x - 2} \right)}} - \frac{1}{{x - 2}}\]
\[ = \frac{{\left( {x + 2} \right)\left( {x - 2} \right) - 5 - 1\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\]\[ = \frac{{{x^2} - 4 - 5 - x - 3}}{{\left( {x + 3} \right)\left( {x - 2} \right)}}\]
\[ = \frac{{{x^2} - x - 12}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{\left( {x - 4} \right)\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 2} \right)}} = \frac{{x - 4}}{{x - 2}}.\]
Vậy \(x \ne - 3\) và \(x \ne 2,\) thì \[C = \frac{{x - 4}}{{x - 2}}.\]
c) Ta có: \[{x^2} - 9 = 0\]
\[\left( {x - 3} \right)\left( {x + 3} \right) = 0\]
\[x = 3\] (thoả mãn điều kiện) hoặc \[x = - 3\] (không thỏa mãn điều kiện)
Thay \[x = 3\] vào biểu thức \[C = \frac{{x - 4}}{{x - 2}},\] ta được: \[C = \frac{{3 - 4}}{{3 - 2}} = \frac{{ - 1}}{1} = - 1.\]
Vậy \[C = - 1\] khi \[{x^2} - 9 = 0.\]
d) Với \(x \ne - 3\) và \(x \ne 2,\) ta có: \[C = \frac{{x - 4}}{{x - 2}} = \frac{{x - 2 - 2}}{{x - 2}} = 1 - \frac{2}{{x - 2}}.\]
Với \(x\) là số nguyên, để \[C\] cũng có giá trị nguyên thì \[x - 2\] là ước của \(2.\)
Mà Ư\(\left( 2 \right) = \left\{ { - 1;\,\,1;\,\, - 2;\,\,2} \right\}.\)
Ta có bảng sau:
|
\[x - 2\] |
\[ - 1\] |
\[1\] |
\[ - 2\] |
\[2\] |
|
\[x\] |
\[1\] (thoả mãn) |
\[3\] (thoả mãn) |
\[0\] (thoả mãn) |
\[4\] (thoả mãn) |
|
\[C = 1 - \frac{2}{{x - 2}}\] |
\[C = 1 - \frac{2}{{ - 1}} = 3\] |
\[C = 1 - \frac{2}{1} = - 1\] |
\[C = 1 - \frac{2}{{ - 2}} = 2\] |
\[C = 1 - \frac{2}{2} = 0\] |
Theo bài, \(C\) có giá trị là số nguyên dương lớn nhất nên \(C = 3.\)
Vậy \(x = 1\) thì \(C\) đạt giá trị nguyên dương lớn nhất là \(C = 3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.