Câu hỏi:

04/12/2025 8 Lưu

Cho hình bình hành \(ABCD\;\left( {AB > BC} \right),\) điểm \(M \in AB.\) Đường thẳng \(DM\) cắt \(AC\)\(K,\) cắt \(BC\)\(N.\)

a) Chứng minh ΔADKΔCNK.

b) Chứng minh \(\frac{{KM}}{{KD}} = \frac{{KA}}{{KC}}.\) Từ đó chứng minh \(K{D^2} = KM \cdot KN.\)

c) Cho \(AB = 10\) cm, \(AD = 9\) cm, \(AM = 6\) cm. Tính \(CN.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Do \(ABCD\) là hình bình hành nên \(AB\,{\rm{//}}\,CD\)\(AD\,{\rm{//}}\,BC.\)

Xét \(\Delta ADK\) \(AD\,{\rm{//}}\,CN\) (do \(AD\,{\rm{//}}\,BC)\) nên ΔADKΔCNK (g.g).

b) Xét \(\Delta KAM\) \(AM\,{\rm{//}}\,CD\) (do \(AB\,{\rm{//}}\,CD)\) nên  (g.g).

Suy ra \(\frac{{KM}}{{KD}} = \frac{{KA}}{{KC}}\) (tỉ số cạnh tương ứng).

Cho hình bình hành \(ABCD\;\lef (ảnh 1)

 ΔADKΔCNK (câu a) nên \(\frac{{KD}}{{KN}} = \frac{{AK}}{{CK}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{KD}}{{KN}} = \frac{{KM}}{{KD}}\) nên \(K{D^2} = KM \cdot KN.\)

c) Do ΔADKΔCNK nên \(\frac{{AK}}{{CK}} = \frac{{AD}}{{CN}}\) (tỉ số cạnh tương ứng).

Do ΔKAMΔKCD nên \(\frac{{AK}}{{CK}} = \frac{{AM}}{{CD}}\) (tỉ số cạnh tương ứng).

Suy ra \(\frac{{AD}}{{CN}} = \frac{{AM}}{{CD}}\) hay \(\frac{9}{{CN}} = \frac{6}{{10}},\) do đó \(CN = \frac{{9 \cdot 10}}{6} = 15\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ADC\)\(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \)\(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\)\(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \)\(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Khi đó \(\frac{{ (ảnh 1)

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\)\(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \)\(\widehat {DAB}\) là góc chung

Do đó (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]

Lời giải

Hướng dẫn giải

a) Xét \(\Delta ABE\) và \(\Delta ADC\) có:

\(\widehat {BAE}\) là góc chung;

\[\frac{{AB}}{{AD}} = \frac{{AE}}{{AC}}\,\,\left( {\frac{8}{{10}} = \frac{{12}}{{15}} = \frac{4}{5}} \right).\]

Do đó ΔABEΔADC (c.g.c).

b) Vì ΔABEΔADC (câu a) nên \(\frac{{AB}}{{AD}} = \frac{{BE}}{{DC}}\)

Suy ra \(AB \cdot DC = AD \cdot BE.\)

Do đó \(DC = \frac{{AD \cdot BE}}{{AB}} = \frac{{10 \cdot 10}}{8} = 12,5{\rm{\;cm}}.\)

Cho góc \(xAy.\) Trên tia \(Ax\) l (ảnh 1)

c) Vì ΔABEΔADC (câu a) nên \(\widehat {AEB} = \widehat {ACD}\) (hai góc tương ứng).

Xét \(\Delta CBI\) và \(\Delta EDI\) có:

\(\widehat {BCI} = \widehat {DEI}\) (do \(\widehat {AEB} = \widehat {ACD})\)\(\widehat {BIC} = \widehat {DIE}\) (hai góc đối đỉnh)

Do đó ΔCBIΔEDI (g.g).

Suy ra \(\frac{{IC}}{{IE}} = \frac{{IB}}{{ID}}\) (tỉ số cạnh tương ứng) nên \[IB \cdot IE = ID \cdot IC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP