Người ta muốn đo khoảng cách giữa hai bờ một dòng sông (khoảng cách \(IK)\) bằng cách lấy hai điểm \(E,\,\,F\) ở bờ sông chứa điểm \(K\) sao cho góc nhìn \(\widehat {EIF}\) là một góc vuông và đo được \[KE = 90\] m, \[KF = 160\] m (hình vẽ). Em hãy tính khoảng cách giữa hai bờ sông đó.

Người ta muốn đo khoảng cách giữa hai bờ một dòng sông (khoảng cách \(IK)\) bằng cách lấy hai điểm \(E,\,\,F\) ở bờ sông chứa điểm \(K\) sao cho góc nhìn \(\widehat {EIF}\) là một góc vuông và đo được \[KE = 90\] m, \[KF = 160\] m (hình vẽ). Em hãy tính khoảng cách giữa hai bờ sông đó.

Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có \(\widehat {IEF} + \widehat {IFE} = 90^\circ \) (do \(\Delta IEF\) vuông tại \(I);\)
\(\widehat {KIF} + \widehat {IFE} = 90^\circ \) (do \(\Delta IEF\) vuông tại \(I).\)
Do đó \(\widehat {IEF} = \widehat {KIF}.\)
Xét \(\Delta IEK\) và \(\Delta FIK\) có:
\[\widehat {IKE} = \widehat {FKI} = 90^\circ \] và \(\widehat {IEF} = \widehat {KIF}\)
Do đó (g.g).
Suy ra \(\frac{{IK}}{{FK}} = \frac{{EK}}{{IK}}\) (tỉ số cạnh tương ứng).
Nên \(I{K^2} = KE \cdot KF = 90 \cdot 160 = 14\,\,400.\) Suy ra \(IK = 120{\rm{\;m}}{\rm{.}}\)
Vậy khoảng cách giữa hai bờ sông là \(120\) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ADC\) và \(\Delta BEC\) có: \(\widehat {ADC} = \widehat {BEC} = 90^\circ \) và \(\widehat {ACB}\) là góc chung. Do đó (g.g). b) Xét \(\Delta HEA\) và \(\Delta HDB\) có: \(\widehat {HEA} = \widehat {HDB} = 90^\circ \) và \(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh) Do đó (g.g). |
|
Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)
c) Vì \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)
Xét \(\Delta AFH\) và \(\Delta ADB\) có:
\(\widehat {AFH} = \widehat {ADB} = 90^\circ \) và \(\widehat {DAB}\) là góc chung
Do đó (g.g).
Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)
d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)
Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)
Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]
Lời giải
Hướng dẫn giải
|
a) Xét \(\Delta ABE\) và \(\Delta ADC\) có: \(\widehat {BAE}\) là góc chung; \[\frac{{AB}}{{AD}} = \frac{{AE}}{{AC}}\,\,\left( {\frac{8}{{10}} = \frac{{12}}{{15}} = \frac{4}{5}} \right).\] Do đó (c.g.c). b) Vì (câu a) nên \(\frac{{AB}}{{AD}} = \frac{{BE}}{{DC}}\) Suy ra \(AB \cdot DC = AD \cdot BE.\) Do đó \(DC = \frac{{AD \cdot BE}}{{AB}} = \frac{{10 \cdot 10}}{8} = 12,5{\rm{\;cm}}.\) |
|
c) Vì (câu a) nên \(\widehat {AEB} = \widehat {ACD}\) (hai góc tương ứng).
Xét \(\Delta CBI\) và \(\Delta EDI\) có:
\(\widehat {BCI} = \widehat {DEI}\) (do \(\widehat {AEB} = \widehat {ACD})\) và \(\widehat {BIC} = \widehat {DIE}\) (hai góc đối đỉnh)
Do đó (g.g).
Suy ra \(\frac{{IC}}{{IE}} = \frac{{IB}}{{ID}}\) (tỉ số cạnh tương ứng) nên \[IB \cdot IE = ID \cdot IC.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

