Một hãng xe ô tô thống kê lại số lần gặp sự cố về động cơ của 100 chiếc xe cùng loại sau 2 năm sử dụng đầu tiên ở bảng sau:
Số lần gặp sự cố
\(\left[ {1;2} \right]\)
\(\left[ {3;4} \right]\)
\(\left[ {5;6} \right]\)
\(\left[ {7;8} \right]\)
\(\left[ {9;10} \right]\)
Số xe
17
33
25
20
5
Một người cho rằng có trên 25% xe của hãng gặp không ít hơn 4 sự cố về động cơ trong 2 năm sử dụng đầu tiên. Nhận định trên có hợp lí không?
Một hãng xe ô tô thống kê lại số lần gặp sự cố về động cơ của 100 chiếc xe cùng loại sau 2 năm sử dụng đầu tiên ở bảng sau:
|
Số lần gặp sự cố |
\(\left[ {1;2} \right]\) |
\(\left[ {3;4} \right]\) |
\(\left[ {5;6} \right]\) |
\(\left[ {7;8} \right]\) |
\(\left[ {9;10} \right]\) |
|
Số xe |
17 |
33 |
25 |
20 |
5 |
Một người cho rằng có trên 25% xe của hãng gặp không ít hơn 4 sự cố về động cơ trong 2 năm sử dụng đầu tiên. Nhận định trên có hợp lí không?
Quảng cáo
Trả lời:
Do số lần gặp sự cố là số nguyên nên ta hiệu chỉnh lại như sau
|
Số lần gặp sự cố |
\(\left[ {0,5;2,5} \right)\) |
\(\left[ {2,5;4,5} \right)\) |
\(\left[ {4,5;6,5} \right)\) |
\(\left[ {6,5;8,5} \right)\) |
\(\left[ {8,5;10,5} \right)\) |
|
Số xe |
17 |
33 |
25 |
20 |
5 |
Tứ phân vị thứ nhất là \(\frac{{{x_{25}} + {x_{26}}}}{2} \in \left[ {2,5;4,5} \right)\).
Ta có \({Q_1} = 2,5 + \frac{{\frac{{100}}{4} - 17}}{{33}} \cdot 2 \approx 2,98\).
Do đó nhận định trên là hợp lí.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cỡ mẫu \(n = 2 + 10 + 16 + 8 + 2 + 2 = 40\).
Gọi \({x_1};{x_2};...;{x_{40}}\) là cân nặng của 40 học sinh được sắp theo thứ tự không giảm.
Tứ phân vị thứ nhất là \(\frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {40;50} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.
Ta có \({Q_1} = 40 + \frac{{\frac{{40}}{4} - 2}}{{10}} \cdot 10 = 48\).
Tứ phân vị thứ ba là \(\frac{{{x_{30}} + {x_{31}}}}{2}\) mà \({x_{30}};{x_{31}} \in \left[ {60;70} \right)\) nên nhóm này chứa tứ phân vị thứ ba.
Ta có \({Q_3} = 60 + \frac{{\frac{{3 \cdot 40}}{4} - 28}}{8} \cdot 10 = 62,5\).
Suy ra \({Q_3} - {Q_1} = 62,5 - 48 = 14,5\).
Trả lời: 14,5.
Lời giải
Cỡ mẫu \(n = 1 + 5 + 22 + 10 + 7 = 45\).
Gọi \({x_1};{x_2};...;{x_{45}}\) là điểm của 45 học sinh được sắp theo thứ tự không giảm.
Tứ phân vị thứ hai là \({x_{23}} \in \left[ {4;6} \right)\)nên nhóm này chứa trung vị.
Ta có \({M_e} = 4 + \frac{{\frac{{45}}{2} - 6}}{{22}} \cdot 2 = 5,5\).
Giáo viên toán có thể nhận định 50% học sinh trong lớp có điểm từ 5,5 trở lên.
Trả lời: 5,5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left[ {9;11} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.