Câu hỏi:

05/12/2025 5 Lưu

Một hộp đựng 9 thẻ đánh số từ 1 đến 9. Rút ngẫu nhiên hai thẻ. Biến cố “Tích hai số trên thẻ là một số chẵn” có xác suất bằng     

A. \(\frac{{13}}{{18}}\).    
B. \(\frac{{11}}{{18}}\).    
C. \(\frac{{10}}{{18}}\).             
D. \(\frac{9}{{18}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Tích hai số trên thẻ là một số chẵn”.

TH1: Rút được hai thẻ mang số chẵn có \(C_4^2 = 6\) cách.

Xác suất trong trường hợp này là \({P_1} = \frac{6}{{C_9^2}} = \frac{1}{6}\).

TH2: Rút được 1 thẻ mang số chẵn và 1 thẻ mang số lẻ có \(C_5^1 \cdot C_4^1 = 20\) cách.

Xác suất trong trường hợp này là \({P_2} = \frac{{20}}{{C_9^2}} = \frac{5}{9}\).

Vậy \(P\left( A \right) = {P_1} + {P_2} = \frac{1}{6} + \frac{5}{9} = \frac{{13}}{{18}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Trong hai thẻ rút ra có ít nhất một thẻ đánh số 9”;

\(H\) là biến cố “Thẻ rút ra từ hòm thứ nhất không đánh số 9”;

\(K\) là biến cố “Thẻ rút ra từ hòm thứ hai không đánh số 9”.

Khi đó \(\overline A = HK\). Ta có \(P\left( H \right) = \frac{{12}}{{13}};P\left( K \right) = \frac{{12}}{{13}}\).

\(H\)\(K\) là hai biến cố độc lập nên \(P\left( {\overline A } \right) = P\left( {HK} \right) = P\left( H \right) \cdot P\left( K \right) = \frac{{144}}{{169}}\).

Do đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{144}}{{169}} = \frac{{25}}{{169}}\).

Câu 2

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
Đúng
Sai
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
Đúng
Sai
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
Đúng
Sai
d) Xác suất để đúng 2 người bắn trúng đích là 0,483.
Đúng
Sai

Lời giải

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).

b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).

c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).

d) Gọi \(D\)là biến cố “Có đúng 2 người bắn trúng đích”.

Khi đó \(D = AB\overline C \cup A\overline B C \cup \overline A BC\).

Khi đó \(P\left( D \right) = P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right)\)\( = P\left( A \right)P\left( B \right)P\left( {\overline C } \right) + P\left( A \right)P\left( {\overline B } \right)P\left( C \right) + P\left( {\overline A } \right)P\left( B \right)P\left( C \right)\)

\( = 0,5 \cdot 0,7 \cdot 0,2 + 0,5 \cdot 0,3 \cdot 0,8 + 0,5 \cdot 0,7 \cdot 0,8 = 0,47\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 3

a) \(P\left( {\overline A B \cup \overline B C} \right) = 0,55\).
Đúng
Sai
b) \(P\left( {A\overline B } \right) = 0,2\).
Đúng
Sai
c) \(P\left( {\overline A \overline B C} \right) = 0,14\).
Đúng
Sai
d) \(P\left( B \right) = 0,24\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(0,2\).                           
B. \(0,3\).                           
C. \(0,4\).                                    
D. \(0,65\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{1}{9}\).              
B. \(\frac{4}{9}\).              
C. \(\frac{2}{9}\).                      
D. \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP