Câu hỏi:

05/12/2025 93 Lưu

Một hộp có 25 chiếc thẻ cùng loại được đánh số từ 1 đến 25. Hai bạn An và Bình chơi trò chơi rút thẻ trong hộp như sau: hai bạn lần lượt rút thẻ, mỗi lượt rút ngẫu nhiên một thẻ rồi ghi lại số trên thẻ vừa rút sau đó trả lại thẻ vào hộp. An sẽ thắng nếu rút được thẻ ghi số chia hết cho 6, Bình sẽ thắng nếu rút được thẻ ghi số chia hết cho 5. Giả sử An chơi trước, tính xác suất để Bình thắng có dạng \(\frac{a}{b}\). Tính \(a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Rút được thẻ ghi số chia hết cho 6”; \(B\) là biến cố “Rút được thẻ ghi số chia hết cho 5”.

Từ 1 đến 25 có 4 số chia hết cho 6. Suy ra \(P\left( A \right) = \frac{4}{{25}} \Rightarrow P\left( {\overline A } \right) = \frac{{21}}{{25}}\).

Từ 1 đến 25 có 5 số chia hết cho 5. Suy ra \(P\left( B \right) = \frac{5}{{25}} = \frac{1}{5} \Rightarrow P\left( {\overline B } \right) = \frac{4}{5}\).

Giả sử Bình thắng ở lần rút thứ n.

Vì các lần rút là độc lập với nhau nên xác suất để Bình thắng ở lần rút thứ n là

\({P_n} = {\left( {\frac{{21}}{{25}}} \right)^n} \cdot {\left( {\frac{4}{5}} \right)^{n - 1}} \cdot \frac{1}{5} = \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n}\).

Do đó xác suất để Bình thắng là:

\(P = \frac{1}{4} \cdot \frac{{84}}{{125}} + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^2} + ... + \frac{1}{4} \cdot {\left( {\frac{{84}}{{125}}} \right)^n} + ...\)\( = \frac{1}{4}\left[ {\left( {\frac{{84}}{{125}}} \right) + {{\left( {\frac{{84}}{{125}}} \right)}^2} + ... + {{\left( {\frac{{84}}{{125}}} \right)}^n} + ...} \right]\).

\(\left( {\frac{{84}}{{125}}} \right),{\left( {\frac{{84}}{{125}}} \right)^2},...,{\left( {\frac{{84}}{{125}}} \right)^n},...\) lập thành một cấp số nhân lùi vô hạn với số hạng đầu \(\frac{{84}}{{125}}\) công bội là \(\frac{{84}}{{125}}\) nên \(P = \frac{1}{4} \cdot \frac{{\frac{{84}}{{125}}}}{{1 - \frac{{84}}{{125}}}} = \frac{{21}}{{41}}\).

Suy ra \(a = 21;b = 41 \Rightarrow a + b = 62\).

Trả lời: 62.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
Đúng
Sai
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
Đúng
Sai
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
Đúng
Sai
d) Xác suất để đúng 2 người bắn trúng đích là 0,483.
Đúng
Sai

Lời giải

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).

b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).

c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).

d) Gọi \(D\)là biến cố “Có đúng 2 người bắn trúng đích”.

Khi đó \(D = AB\overline C \cup A\overline B C \cup \overline A BC\).

Khi đó \(P\left( D \right) = P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right)\)\( = P\left( A \right)P\left( B \right)P\left( {\overline C } \right) + P\left( A \right)P\left( {\overline B } \right)P\left( C \right) + P\left( {\overline A } \right)P\left( B \right)P\left( C \right)\)

\( = 0,5 \cdot 0,7 \cdot 0,2 + 0,5 \cdot 0,3 \cdot 0,8 + 0,5 \cdot 0,7 \cdot 0,8 = 0,47\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Quy ước gene \(A\): hạt gạo đục và gene \(a\): hạt gạo trong.

Ở thế hệ \({F_2}\) có ba kiểu gene \(AA,Aa,aa\) xuất hiện với tỉ lệ 1 : 2 : 1.

Nên tỉ lệ hạt gạo đục so với hạt gạo trong là 3 : 1.

Gọi \({A_1}\) là biến cố “Hạt gạo lấy ra lần thứ nhất là hạt gạo đục”;

\({A_2}\) là biến cố “Hạt gạo lấy ra lần thứ hai là hạt gạo đục”.

Ta có \({A_1};{A_2}\) là hai biến cố độc lập và \(P\left( {{A_1}} \right) = P\left( {{A_2}} \right) = \frac{3}{4}\).

Xác suất của biến cố “Có đúng 1 hạt gạo đục trong 2 hạt gạo được lấy ra” là

\(P\left( {{A_1}\overline {{A_2}} \cup \overline {{A_1}} {A_2}} \right) = P\left( {{A_1}\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} {A_2}} \right) = P\left( {{A_1}} \right)P\left( {\overline {{A_2}} } \right) + P\left( {\overline {{A_1}} } \right)P\left( {{A_2}} \right) = 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{8}\).

Câu 5

A. Hai viên bi lấy ra có cùng màu và \(n\left( {A \cup B} \right) = 25\).     
B. Hai viên bi lấy ra có cùng đỏ và \(n\left( {A \cup B} \right) = 20\).    
C. Hai viên bi lấy ra có cùng màu và \(n\left( {A \cup B} \right) = 13\).     
D. Hai viên bi lấy ra có cùng màu xanh và \(n\left( {A \cup B} \right) = 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP