Câu hỏi:

05/12/2025 59 Lưu

Hai xạ thủ cùng bắn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của xạ thủ thứ nhất bằng \(\frac{1}{2}\), xác suất bắn trúng bia của xạ thủ thứ hai bằng \(\frac{1}{3}\). Tính xác suất của biến cố xạ thủ thứ nhất bắn trúng bia, xạ thủ thứ hai bắn không trúng bia (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Xạ thủ thứ nhất bắn trúng bia”;

\(B\) là biến cố “Xạ thủ thứ hai bắn trúng bia”.

Theo đề ta có \(A,B\) là hai biến cố độc lập và \(P\left( A \right) = \frac{1}{2};P\left( B \right) = \frac{1}{3}\).

Suy ra \(P\left( {\overline A } \right) = \frac{1}{2};P\left( {\overline B } \right) = \frac{2}{3}\).

Xác suất biến cố \(A\overline B \)\(P\left( {A\overline B } \right) = P\left( A \right) \cdot P\left( {\overline B } \right) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3} \approx 0,3\).

Trả lời: 0,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”; \(B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 5”.

Khi đó \(A \cup B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3 hoặc 5”.

Từ 1 đến 100 có 33 số chia hết cho 3 nên \(P\left( A \right) = \frac{{33}}{{100}} = 0,33\).

Từ 1 đến 100 có 20 số chia hết cho 5 nên \(P\left( A \right) = \frac{{20}}{{100}} = 0,2\).

Từ 1 đến 100 có 6 số chia hết cho 15 nên \(P\left( {AB} \right) = \frac{6}{{100}} = 0,06\).

Vậy \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,47\).

Trả lời: 0,47.

Câu 2

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
Đúng
Sai
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
Đúng
Sai
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
Đúng
Sai
d) Xác suất để đúng 2 người bắn trúng đích là 0,483.
Đúng
Sai

Lời giải

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).

b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).

c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).

d) Gọi \(D\)là biến cố “Có đúng 2 người bắn trúng đích”.

Khi đó \(D = AB\overline C \cup A\overline B C \cup \overline A BC\).

Khi đó \(P\left( D \right) = P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right)\)\( = P\left( A \right)P\left( B \right)P\left( {\overline C } \right) + P\left( A \right)P\left( {\overline B } \right)P\left( C \right) + P\left( {\overline A } \right)P\left( B \right)P\left( C \right)\)

\( = 0,5 \cdot 0,7 \cdot 0,2 + 0,5 \cdot 0,3 \cdot 0,8 + 0,5 \cdot 0,7 \cdot 0,8 = 0,47\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 5

A. Hai viên bi lấy ra có cùng màu và \(n\left( {A \cup B} \right) = 25\).     
B. Hai viên bi lấy ra có cùng đỏ và \(n\left( {A \cup B} \right) = 20\).    
C. Hai viên bi lấy ra có cùng màu và \(n\left( {A \cup B} \right) = 13\).     
D. Hai viên bi lấy ra có cùng màu xanh và \(n\left( {A \cup B} \right) = 10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP