Hai bạn An và Bình cùng chơi một trận cầu lông diễn ra tối đa 5 sét đấu. Người nào thắng 3 sét trước sẽ thắng trận đấu. Biết xác suất giành chiến thắng mỗi sét của An là 0,4. Tính xác suất để An là người thắng trận thi đấu cầu lông này.
Hai bạn An và Bình cùng chơi một trận cầu lông diễn ra tối đa 5 sét đấu. Người nào thắng 3 sét trước sẽ thắng trận đấu. Biết xác suất giành chiến thắng mỗi sét của An là 0,4. Tính xác suất để An là người thắng trận thi đấu cầu lông này.
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “An thắng trận cầu lông”.
TH1: An thắng cả ba sét đầu.
Khi đó \({P_1} = 0,{4^3} = 0,064\).
TH2: An thắng khi thi đấu 4 sét đầu
Khi đó \({P_2} = 3 \cdot {\left( {0,4} \right)^3} \cdot 0,6 = 0,1152\).
TH3: An thắng khi thi đấu 5 sét
Khi đó \({P_3} = C_4^2 \cdot 0,{4^3} \cdot 0,{6^2} = 0,13824\).
Vậy \(P\left( A \right) = {P_1} + {P_2} + {P_3} = 0,064 + 0,1152 + 0,13824 = 0,31744\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”; \(B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 5”.
Khi đó \(A \cup B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3 hoặc 5”.
Từ 1 đến 100 có 33 số chia hết cho 3 nên \(P\left( A \right) = \frac{{33}}{{100}} = 0,33\).
Từ 1 đến 100 có 20 số chia hết cho 5 nên \(P\left( A \right) = \frac{{20}}{{100}} = 0,2\).
Từ 1 đến 100 có 6 số chia hết cho 15 nên \(P\left( {AB} \right) = \frac{6}{{100}} = 0,06\).
Vậy \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,47\).
Trả lời: 0,47.
Câu 2
Lời giải
a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
d) Gọi \(D\)là biến cố “Có đúng 2 người bắn trúng đích”.
Khi đó \(D = AB\overline C \cup A\overline B C \cup \overline A BC\).
Khi đó \(P\left( D \right) = P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right)\)\( = P\left( A \right)P\left( B \right)P\left( {\overline C } \right) + P\left( A \right)P\left( {\overline B } \right)P\left( C \right) + P\left( {\overline A } \right)P\left( B \right)P\left( C \right)\)
\( = 0,5 \cdot 0,7 \cdot 0,2 + 0,5 \cdot 0,3 \cdot 0,8 + 0,5 \cdot 0,7 \cdot 0,8 = 0,47\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{1}{{35}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.