Câu hỏi:

05/12/2025 4 Lưu

Hai bạn An và Bình cùng chơi một trận cầu lông diễn ra tối đa 5 sét đấu. Người nào thắng 3 sét trước sẽ thắng trận đấu. Biết xác suất giành chiến thắng mỗi sét của An là 0,4. Tính xác suất để An là người thắng trận thi đấu cầu lông này.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “An thắng trận cầu lông”.

TH1: An thắng cả ba sét đầu.

Khi đó \({P_1} = 0,{4^3} = 0,064\).

TH2: An thắng khi thi đấu 4 sét đầu

Khi đó \({P_2} = 3 \cdot {\left( {0,4} \right)^3} \cdot 0,6 = 0,1152\).

TH3: An thắng khi thi đấu 5 sét

Khi đó \({P_3} = C_4^2 \cdot 0,{4^3} \cdot 0,{6^2} = 0,13824\).

Vậy \(P\left( A \right) = {P_1} + {P_2} + {P_3} = 0,064 + 0,1152 + 0,13824 = 0,31744\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố “Trong hai thẻ rút ra có ít nhất một thẻ đánh số 9”;

\(H\) là biến cố “Thẻ rút ra từ hòm thứ nhất không đánh số 9”;

\(K\) là biến cố “Thẻ rút ra từ hòm thứ hai không đánh số 9”.

Khi đó \(\overline A = HK\). Ta có \(P\left( H \right) = \frac{{12}}{{13}};P\left( K \right) = \frac{{12}}{{13}}\).

\(H\)\(K\) là hai biến cố độc lập nên \(P\left( {\overline A } \right) = P\left( {HK} \right) = P\left( H \right) \cdot P\left( K \right) = \frac{{144}}{{169}}\).

Do đó \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{144}}{{169}} = \frac{{25}}{{169}}\).

Câu 2

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).
Đúng
Sai
b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).
Đúng
Sai
c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).
Đúng
Sai
d) Xác suất để đúng 2 người bắn trúng đích là 0,483.
Đúng
Sai

Lời giải

a) Gọi \(C\) là biến cố “Người thứ ba bắn trúng đích” \( \Rightarrow P\left( C \right) = 0,8;P\left( {\overline C } \right) = 0,2\).

b) Gọi \(B\) là biến cố “Người thứ hai bắn trúng đích” \( \Rightarrow P\left( B \right) = 0,7;P\left( {\overline B } \right) = 0,3\).

c) Gọi \(A\) là biến cố “Người thứ nhất bắn trúng đích” \( \Rightarrow P\left( A \right) = 0,5;P\left( {\overline A } \right) = 0,5\).

d) Gọi \(D\)là biến cố “Có đúng 2 người bắn trúng đích”.

Khi đó \(D = AB\overline C \cup A\overline B C \cup \overline A BC\).

Khi đó \(P\left( D \right) = P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right)\)\( = P\left( A \right)P\left( B \right)P\left( {\overline C } \right) + P\left( A \right)P\left( {\overline B } \right)P\left( C \right) + P\left( {\overline A } \right)P\left( B \right)P\left( C \right)\)

\( = 0,5 \cdot 0,7 \cdot 0,2 + 0,5 \cdot 0,3 \cdot 0,8 + 0,5 \cdot 0,7 \cdot 0,8 = 0,47\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 3

a) \(P\left( {\overline A B \cup \overline B C} \right) = 0,55\).
Đúng
Sai
b) \(P\left( {A\overline B } \right) = 0,2\).
Đúng
Sai
c) \(P\left( {\overline A \overline B C} \right) = 0,14\).
Đúng
Sai
d) \(P\left( B \right) = 0,24\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0,2\).                           
B. \(0,3\).                           
C. \(0,4\).                                    
D. \(0,65\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{9}\).              
B. \(\frac{4}{9}\).              
C. \(\frac{2}{9}\).                      
D. \(\frac{4}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP