Cho \(A,B\) là hai biến cố xung khắc. Biết \(P\left( A \right) = \frac{1}{5},P\left( {A \cup B} \right) = \frac{1}{3}\). Tính \(P\left( B \right)\).
Quảng cáo
Trả lời:
Vì \(A,B\) là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)\( \Rightarrow P\left( B \right) = \frac{1}{3} - \frac{1}{5} = \frac{2}{{15}}\). Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(A\) là biến cố “Chọn được học sinh nam từ lớp 11A”;
\(B\) là biến cố “Chọn được học sinh nam từ lớp 11B”.
Theo đề ta có \(A,B\) là hai biến cố độc lập và \(P\left( A \right) = \frac{{20}}{{35}} = \frac{4}{7};P\left( B \right) = \frac{{25}}{{35}} = \frac{5}{7}\).
Suy ra \(P\left( {\overline A } \right) = \frac{3}{7};P\left( {\overline B } \right) = \frac{2}{7}\).
a) Xác suất để chọn được 1 học sinh nam và 1 học sinh nữ là
\(P\left( {A\overline B } \right) + P\left( {\overline A B} \right) = \frac{4}{7} \cdot \frac{2}{7} + \frac{3}{7} \cdot \frac{5}{7} = \frac{{23}}{{49}}\).
b) Xác suất để chọn được học sinh nữ từ lớp \(B\) là \(P\left( {\overline B } \right) = \frac{2}{7}\).
c) Xác suất để chọn được học sinh nam từ lớp \(A\) là \(P\left( A \right) = \frac{4}{7}\).
d) Xác suất để không chọn được học sinh nữ là \(P\left( {AB} \right) = \frac{4}{7} \cdot \frac{5}{7} = \frac{{20}}{{49}}\).
Suy ra xác suất chọn được ít nhất một học sinh nữ là \(P = 1 - \frac{{20}}{{49}} = \frac{{29}}{{49}}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Gọi \(A\) là biến cố “Gọi 4 học sinh nam lên bảng”; \(B\) là biến cố “Gọi 4 học sinh nữ lên bảng”.
\(A \cup B\) là biến cố “Gọi 4 học sinh nam lên bảng hoặc 4 học sinh nữ lên bảng”.
Vì \(A,B\) là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{{C_{15}^4 + C_{25}^4}}{{C_{40}^4}} = \frac{{2803}}{{18278}}\).
Xác suất để 4 học sinh lên bảng có cả nam và nữ là \(1 - \frac{{2803}}{{18278}} \approx 0,85\).
Trả lời: 0,85.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.