Câu hỏi:

05/12/2025 29 Lưu

Cho hàm số \(f\left( x \right) = {\log _2}\left( {{x^2} - 1} \right)\). Phương trình \(y' = 0\) có bao nhiêu nghiệm?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(y' = \frac{{{{\left( {{x^2} - 1} \right)}^\prime }}}{{\left( {{x^2} - 1} \right)\ln 2}} = \frac{{2x}}{{\left( {{x^2} - 1} \right)\ln 2}}\) với \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\)

Ta có \(y' = 0 \Leftrightarrow x = 0\) (loại).

Vậy phương trình \(y' = 0\) vô nghiệm.

Trả lời: 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tập xác định của hàm số \(y = f\left( x \right)\)\(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).
Đúng
Sai
b) Đạo hàm của hàm số \(y = f\left( x \right)\)\(f'\left( x \right) = \frac{{2024}}{{x\left( {x + 1} \right)}}\).
Đúng
Sai
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \frac{1}{2}\).
Đúng
Sai
d) \(f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2024} \right) = \frac{1}{{2025}}\).
Đúng
Sai

Lời giải

a) Điều kiện: \(\frac{{2024x}}{{x + 1}} > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 0\end{array} \right.\).

Tập xác định của hàm số \(y = f\left( x \right)\)\(D = \left( { - \infty ; - 1} \right) \cup \left( {0; + \infty } \right)\).

b) \(f'\left( x \right) = \frac{1}{{\frac{{2024x}}{{x + 1}}}} \cdot {\left( {\frac{{2024x}}{{x + 1}}} \right)^\prime }\)\( = \frac{{x + 1}}{{2024x}} \cdot \frac{{2024}}{{{{\left( {x + 1} \right)}^2}}}\)\( = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = f'\left( 1 \right) = 1 - \frac{1}{2} = \frac{1}{2}\).

d) \(f'\left( 1 \right) + f'\left( 2 \right) + ... + f'\left( {2024} \right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{{2024}} - \frac{1}{{2025}} = 1 - \frac{1}{{2025}} = \frac{{2024}}{{2025}}\).

Đáp án: a) Đúng;      b) Sai;     c) Đúng;    d) Sai.

Câu 2

A. \(5\).                              
B. \( - 1\).                           
C. \( - 5\).                                          
D. \(4\).

Lời giải

Lời giải

\(f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = 5\). Chọn A.

Câu 3

A. \({\left( {\cos x} \right)^\prime } = - \sin x\).      
B. \({\left( {\sin x} \right)^\prime } = - \cos x\).                                      
C. \({\left( {\cos x} \right)^\prime } = {\sin ^2}x\).                                 
D. \({\left( {\cos x} \right)^\prime } = \sin x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}\).
Đúng
Sai
b) \(f'\left( x \right) < 0\) với mọi \(x \ne - 2\).
Đúng
Sai
c) Phương trình tiếp tuyến của đồ thị tại điểm \(\left( {0; - 4} \right)\)\(y = 2x - 4\).
Đúng
Sai
d) Hàm số có đạo hàm cấp hai \(f''\left( x \right) = \frac{4}{{{{\left( {x + 2} \right)}^3}}}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y' = 2x \cdot \cos x + {x^2}\sin x\).                    
B. \(y' = 2x \cdot \sin x + {x^2}\cos x\).                 
C. \(y' = 2x \cdot \cos x - {x^2}\sin x\).                     
D. \(y' = 2x \cdot \sin x - {x^2}\cos x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP