Câu hỏi:

06/12/2025 325 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\), \(\widehat {ABC} = 60^\circ \). Mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi \(H,M,N\) lần lượt là trung điểm của \(AB,SA,CD\).

a) Chứng minh \(SH \bot \left( {ABCD} \right)\) và tính theo \(a\) thể tích khối chóp \(S.ABCD\).

b) Gọi \(\alpha \) là số đo góc nhị diện \(\left[ {A,SC,B} \right]\). Tính \(\cos \alpha \).

c) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(BM\)\(SN\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) (ảnh 1)

a) Vì \(\Delta SAB\) đều \( \Rightarrow SH \bot AB\)\(\left( {SAB} \right) \bot \left( {ABCD} \right) \Rightarrow SH \bot \left( {ABCD} \right)\).

\(\Delta SAB\) đều cạnh \(a\) nên \(SH = \frac{{a\sqrt 3 }}{2}\); \({S_{ABCD}} = AB \cdot BC \cdot \sin \widehat {ABC} = \frac{{{a^2}\sqrt 3 }}{2}\).

Khi đó \({V_{S.ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).

b) Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a\). Suy ra các tam giác \(SAC\)\(SBC\) lần lượt cân tại \(A\)\(B\).

Gọi \(I\) là trung điểm của \(SC\). Suy ra \(AI \bot SC\)\(BI \bot SC\).

Do đó \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,SC,B} \right]\).

Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).

\(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\).

Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).

Khi đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2IA \cdot IB}} = \frac{1}{5}\).

c) Ta có \(\Delta ACD\) đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).

\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).

Dựng \(MK \bot SN\) tại \(K\)\( \Rightarrow MK\) là đoạn vuông góc chung của \(BM\)\(SN\).

Khi đó \(d\left( {BM,SN} \right) = MK\).

Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\), cạnh bằng \(4a\), góc \(\widehat {ABC} = 60^\circ \), cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\sqrt 7 \). T (ảnh 1)

\(ABCD\) là hình thoi nên \(AO \bot BD\) (1).

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\) (2).

Từ (1) và (2), suy ra\(BD \bot \left( {SAO} \right) \Rightarrow BD \bot SO\).

Do đó \(\left[ {S,BD,A} \right] = \widehat {SOA}\).

Xét \(\Delta ABC\)\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos \widehat {ABC}\) \( = 16{a^2} + 16{a^2} - 2 \cdot 4a \cdot 4a \cdot \cos 60^\circ = 16{a^2}\).

Suy ra \(AC = 4a \Rightarrow AO = \frac{{AC}}{2} = 2a\).

Xét \(\Delta SAO\) vuông tại \(A\), có \(\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 7 }}{{2a}} \approx 1,32\).

Trả lời: 1,32.

Câu 2

A. \(\widehat {SCA}\).          

B. \(\widehat {SOA}\).     
C. \(\widehat {SOC}\).                                
D. \(\widehat {SOD}\).

Lời giải

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)\(AC \bot BD\) nên \(BD \bot \left( {SOA} \right) \Rightarrow BD \bot SO\).

Lại có \(CO \bot BD\).

Do đó một góc phẳng của góc nhị diện \(\left[ {S,BD,C} \right]\)\(\widehat {SOC}\). Chọn C.

Câu 3

a) \(AM\) là đoạn vuông góc chung của hai đường thẳng chéo nhau \(AA'\)\(BC\).
Đúng
Sai
b) Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {A'BC} \right)\)\(\frac{{a\sqrt {15} }}{5}\).
Đúng
Sai
c) Khoảng cách giữa hai mặt phẳng \(\left( {ABC} \right)\)\(\left( {A'B'C'} \right)\) bằng \(a\sqrt 2 \).
Đúng
Sai
d) Khoảng cách giữa hai đường thẳng \(AA'\)\(BC\)\(\frac{{a\sqrt 5 }}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(BC \bot SA\).
Đúng
Sai
b) \(BD \bot \left( {SAB} \right)\).
Đúng
Sai
c) Thể tích của khối chóp \(S.ABCD\) bằng \(\frac{{\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
d) Thể tích của khối chóp \(S.ABC\) bằng \(\frac{{\sqrt 3 }}{4}{a^3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Góc giữa \(AC'\)\(\left( {ABB'A'} \right)\)\(\widehat {B'AC'}\).
Đúng
Sai
b) Thể tích lăng trụ đã cho bằng \(\frac{{\sqrt 3 {a^3}}}{3}\).
Đúng
Sai
c) Hai mặt phẳng \(\left( {BCC'B'} \right)\)\(\left( {ABC} \right)\) vuông góc nhau.
Đúng
Sai
d) Khoảng cách giữa \(AA'\)\(BC'\) bằng \(\frac{{a\sqrt 3 }}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\) bằng \(\frac{{a\sqrt 6 }}{3}\).
Đúng
Sai
b) Số đo của góc nhị diện \(\left[ {S,BC,A} \right]\) bằng \(45^\circ \).
Đúng
Sai
c) \(BC \bot \left( {SAB} \right)\).
Đúng
Sai
d) Thể tích khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt 2 }}{3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP