Phần 3. Trắc nghiệm trả lời ngắn
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\), cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 ,AD = 2AB = 2BC = 2a\). Tính côsin của góc nhị diện \(\left[ {A,SD,C} \right]\) (lấy kết quả đến hàng phần chục).
Phần 3. Trắc nghiệm trả lời ngắn
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\), cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 2 ,AD = 2AB = 2BC = 2a\). Tính côsin của góc nhị diện \(\left[ {A,SD,C} \right]\) (lấy kết quả đến hàng phần chục).
Câu hỏi trong đề: Đề kiểm tra Toán 11 Cánh diều Chương 8 có đáp án !!
Quảng cáo
Trả lời:

Gọi \(M\) là trung điểm của \(AD\). Khi đó \(ABCM\) là hình vuông.
Hạ \(MH \bot SD\).
Ta có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CM\) mà \(CM \bot AD\) nên \(CM \bot \left( {SAD} \right)\). Suy ra \(CM \bot SD\).
Lại có \(MH \bot SD\) nên \(SD \bot \left( {MHC} \right)\). Suy ra \(CH \bot SD\).
Do đó \(\left[ {A,SD,C} \right] = \left[ {M,SD,C} \right] = \widehat {MHC}\).
Xét \(\Delta SAD\) vuông tại \(A\), có \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{a\sqrt 2 }}{{2a}} = \frac{{\sqrt 2 }}{2}\).
Suy ra \(\sin \widehat {SDA} = \frac{{\sqrt 3 }}{3}\).
Xét \(\Delta MHD\) vuông tại \(H\), có \(\sin \widehat {SDA} = \frac{{MH}}{{MD}} \Rightarrow MH = \frac{{a\sqrt 3 }}{3}\).
Vì \(CM \bot \left( {SAD} \right)\) nên \(CM \bot MH\). Do đó \(\Delta CMH\) vuông tại \(M\).
Có \(CH = \sqrt {C{M^2} + M{H^2}} = \sqrt {{a^2} + \frac{{3{a^2}}}{9}} = \frac{{2a\sqrt 3 }}{3}\).
\(\cos \widehat {MHC} = \frac{{MH}}{{CH}} = \frac{{a\sqrt 3 }}{3}:\frac{{2a\sqrt 3 }}{3} = \frac{1}{2} = 0,5\).
Trả lời: 0,5.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) \({V_{ABCD.A'B'C'D'}} = {a^3}\).
b) \(A'C = a\sqrt 3 \).
c) Có \(ACC'A'\) là hình bình hành nên \(AC//A'C'\).
Khi đó \(\left( {AC,A'D'} \right) = \left( {A'C',A'D'} \right) = \widehat {D'A'C'} = 45^\circ \).
d) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).
Ta có \(AO \bot BD\) mà \(AA' \bot BD\) nên \(BD \bot \left( {AOA'} \right)\).
Hạ \(AH \bot A'O\) và \(AH \bot BD\left( {BD \bot \left( {AOA'} \right)} \right)\) nên \(AH \bot \left( {A'BD} \right)\).
Suy ra \(d\left( {A,\left( {A'BD} \right)} \right) = AH\).
Ta có \(AO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\).
Xét \(\Delta A'AO\) vuông tại \(A\), ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{{a^2}}} + \frac{2}{{{a^2}}} = \frac{3}{{{a^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{3}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Câu 2
Lời giải

a) Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\) mà \(BC \bot AB\) \( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\)
\( \Rightarrow \Delta SBC\) là tam giác vuông tại \(B\).
b) Vì \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\) mà \(AH \bot SB\) nên \(AH \bot \left( {SBC} \right)\).
c) Vì \(AH \bot \left( {SBC} \right)\) nên \(AH \bot SC\) mà \(AK \bot SC\)\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\) hay \(\left( {SC,HK} \right) = 90^\circ \).
d) Vì \(HK \bot SC\) và \(AK \bot SC\) nên \(SC \bot \left( {ADK} \right) \Rightarrow AD \bot SC\) (1).
Mà \(SA \bot \left( {ADC} \right) \Rightarrow SA \bot AD\) (2).
Từ (1) và (2), suy ra \(AD \bot \left( {SAC} \right) \Rightarrow AD \bot AC\) hay \(\left( {AC,AD} \right) = 90^\circ \).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.